Skip to main content
Log in

Understanding pyrroline-5-carboxylate synthetase deficiency: clinical, molecular, functional, and expression studies, structure-based analysis, and novel therapy with arginine

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Δ1-Pyrroline-5-carboxylate synthetase (P5CS) catalyzes the first two steps of ornithine/proline biosynthesis. P5CS deficiency has been reported in three families, with patients presenting with cutis/joint laxity, cataracts, and neurodevelopmental delay. Only one family exhibited metabolic changes consistent with P5CS deficiency (low proline/ornithine/citrulline/arginine; fasting hyperammonemia). Here we report a new P5CS-deficient patient presenting the complete clinical/metabolic phenotype and carrying p.G93R and p.T299I substitutions in the γ-glutamyl kinase (γGK) component of P5CS. The effects of these substitutions are (1) tested in mutagenesis/functional studies with E.coli γGK, (2) rationalized by structural modelling, and (3) reflected in decreased P5CS protein in patient fibroblasts (shown by immunofluorescence). Using optical/electron microscopy on skin biopsy, we show collagen/elastin fiber alterations that may contribute to connective tissue laxity and are compatible with our angio-MRI finding of kinky brain vessels in the patient. MR spectroscopy revealed decreased brain creatine, which normalized after sustained arginine supplementation, with improvement of neurodevelopmental and metabolic parameters, suggesting a pathogenic role of brain creatine decrease and the value of arginine therapy. Morphological and functional studies of fibroblast mitochondria show that P5CS deficiency is not associated with the mitochondrial alterations observed in Δ1-pyrroline-5-carboxylate reductase deficiency (another proline biosynthesis defect presenting cutis laxa and neurological alterations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso E, Rubio V (1989) Participation of ornithine aminotransferase in the synthesis and catabolism of ornithine in mice. Studies using gabaculine and arginine deprivation. Biochem J 259:131–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barnett CP, Chitayat D, Bradley TJ, Wang Y, Hinek A (2011) Dexamethasone normalizes aberrant elastic fiber production and collagen 1 secretion by Loeys-Dietz syndrome fibroblasts: a possible treatment? Eur J Hum Genet 19:624–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baumgartner MR, Hu CA, Almashanu S et al (2000) Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new inborn error caused by a mutation in the gene encoding Δ1- pyrroline-5-carboxylate synthetase. Hum Mol Genet 9:2853–2858

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner MR, Rabier D, Nassogne MC et al (2005) Δ1-Pyrroline-5-carboxylate synthetase deficiency: neurodegeneration, cataracts and connective tissue manifestations combined with hyperammonaemia and reduced ornithine, citrulline, arginine and proline. Eur J Pediatr 164:31–36

    Article  CAS  PubMed  Google Scholar 

  • Béard E, Braissant O (2010) Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 115:297–313

    Article  PubMed  Google Scholar 

  • Bicknell LS, Pitt J, Aftimos S, Ramadas R, Maw MA, Robertson SP (2008) A missense mutation in ALDH18A1, encoding Δ1-pyrroline-5-carboxylate synthetase (P5CS), causes an autosomal recessive neurocutaneous syndrome. Eur J Hum Genet 16:1176–1186

    Article  CAS  PubMed  Google Scholar 

  • Braissant O, Henry H, Béard E, Uldry J (2011) Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids 40:1315–1324

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, da Silva RP, Brosnan ME (2011) The metabolic burden of creatine synthesis. Amino Acids 40:1325–1331

    Article  CAS  PubMed  Google Scholar 

  • Brünger AT, Adams PD, Clore GM et al (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D: Biol Crystallogr 54:905–921

    Article  Google Scholar 

  • Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, Jones DT (2005) Protein structure prediction servers at University College London. Nucl Acids Res 33:W36–W38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chilosi A, Leuzzi V, Battini R et al (2008) Treatment with L-arginine improves neuropsychological disorders in a child with creatine transporter defect. Neurocase 14:151–161

    Article  PubMed  Google Scholar 

  • Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 35(Suppl 2):W197–W201

    Article  Google Scholar 

  • Collaborative Computational Project Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D 50:760–763

    Article  Google Scholar 

  • Coucke PJ, Willaert A, Wessels MW et al (2006) Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet 38:452–457

    Article  CAS  PubMed  Google Scholar 

  • Dietz AA, Lubrano T, Covault HP, Rubinstein HM (1982) Correct for hydroxyproline in elastin when measuring collagen in tissues with a high elastin content. Clin Chem 28:1709

    CAS  PubMed  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallog Sect D 60:2126–2132

    Article  Google Scholar 

  • Fons C, Sempere A, Arias A et al (2008) Arginine supplementation in four patients with X-linked creatine transporter defect. J Inherit Metab Dis 31:724–728

    Article  CAS  PubMed  Google Scholar 

  • Geourjon C, Delage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  • Guernsey DL, Jiang H, Evans SC et al (2009) Mutation in pyrroline-5-carboxylate reductase 1 gene in families with cutis laxa type 2. Am J Hum Genet 85:120–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu CA, Lin WW, Obie C, Valle D (1999) Molecular enzymology of mammalian Δ1-pyrroline-5-carboxylate synthetase. Alternative splice donor utilization generates isoforms with different sensitivity to ornithine inhibition. J Biol Chem 274:6754–6762

    Article  CAS  PubMed  Google Scholar 

  • Hu CA, Bart Williams D, Zhaorigetu S, Khalil S, Wan G, Valle D (2008) Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes. Amino Acids 35:655–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krishnan N, Dickman MB, Becker DF (2008) Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med 44:671–681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallog 26:283–291

    Article  CAS  Google Scholar 

  • Lee YC, Huang HY, Chang CJ, Cheng CH, Chen YT (2010) Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Hum Mol Genet 19:3721–3733

    Article  CAS  PubMed  Google Scholar 

  • Marco-Marín C, Gil-Ortiz F, Pérez-Arellano I, Cervera J, Fita I, Rubio V (2007) A novel two-domain architecture within the amino acid kinase enzyme family revealed by the crystal structure of Escherichia coli glutamate 5-kinase. J Mol Biol 367:1431–1446

    Article  PubMed  Google Scholar 

  • Nänto-Salonen K, Komu M, Lundbom N et al (1999) Reduced brain creatine in gyrate atrophy of the choroid and retina with hyperornithinemia. Neurology 53:303–307

    Article  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez-Arellano I, Gil-Ortiz F, Cervera J, Rubio V (2004) Glutamate-5-kinase from Escherichia coli: gene cloning, overexpression, purification and crystallization of the recombinant enzyme and preliminary X-ray studies. Acta Crystallogr D: Biol Crystallogr 60:2091–2094

    Article  Google Scholar 

  • Pérez-Arellano I, Rubio V, Cervera J (2005) Dissection of Escherichia coli glutamate 5-kinase: functional impact of the deletion of the PUA domain. FEBS Lett 579:6903–6908

    Article  PubMed  Google Scholar 

  • Pérez-Arellano I, Rubio V, Cervera J (2006) Mapping active site residues in glutamate-5-kinase. The substrate glutamate and the feed-back inhibitor proline bind at overlapping sites. FEBS Lett 580:6247–6253

    Article  PubMed  Google Scholar 

  • Pérez-Arellano I, Carmona-Alvarez F, Martínez AI, Rodríguez-Díaz J, Cervera J (2010) Pyrroline-5-carboxylate synthetase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci 19:372–382

    PubMed Central  PubMed  Google Scholar 

  • Phang JM, Hu CA, Valle D (2000) Disorders of proline and hydroxyproline metabolism. In: Scriver CR, Beaudet Al, Valle D, Sly WS (eds) The metabolic and molecular bases of Inherited disease. McGraw Hill, New York, pp 1821–1838

    Google Scholar 

  • Ramón-Maiques S, Marina A, Gil-Ortiz F, Fita I, Rubio V (2002) Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase enzyme family, during catalysis. Structure 10:329–342

    Article  PubMed  Google Scholar 

  • Reversade B, Escande-Beillard N, Dimopoulou A et al (2009) Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet 41:1016–1021

    Article  CAS  PubMed  Google Scholar 

  • Rizza T, Vazquez-Memije ME, Meschini MC et al (2009) Assaying ATP synthesis in cultured cells: a valuable tool for the diagnosis of patients with mitochondrial disorders. Biochem Biophys Res Commun 383:58–62

    Article  CAS  PubMed  Google Scholar 

  • Robins SP (2007) Biochemistry and functional significance of collagen cross-linking. Biochem Soc Trans 35:849–852

    Article  CAS  PubMed  Google Scholar 

  • Royce PM, Steinmann B (1990) Markedly reduced activity of lysyl oxidase in skin and aorta from a patient with Menkes' disease showing unusually severe connective tissue manifestations. Pediatr Res 28:137–141

    CAS  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  • Scholl-Bürgi S, Haberlandt E, Heinz-Erian P et al (2008) Amino acid cerebrospinal fluid/plasma ratios in children: influence of age, gender, and antiepileptic medication. Pediatrics 121:e920–e926

    Article  PubMed  Google Scholar 

  • Segade F (2010) Glucose transporter 10 and arterial tortuosity syndrome: the vitamin C connection. FEBS Lett 584:2990–2994

    Article  CAS  PubMed  Google Scholar 

  • Sen TZ, Jernigan RL, Garnier J, Kloczkowski A (2005) GOR V server for protein secondary structure prediction. Bioinformatics 21:2787–2788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sirleto P, Surace C, Santos H et al (2009) Lyonization effects of the t(X;16) translocation on the phenotypic expression in a rare female with Menkes disease. Pediatr Res 65:347–351

    Article  PubMed  Google Scholar 

  • Skidmore DL, Chitayat D, Morgan T et al (2011) Further expansion of the phenotypic spectrum associated with mutations in ALDH18A1, encoding Δ¹-pyrroline-5-carboxylate synthetase (P5CS. Am J Med Genet A 155A:1848–1856

    Article  PubMed  Google Scholar 

  • Tanner JJ (2008) Structural biology of proline catabolism. Amino Acids 35:719–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tong BC, Barbul A (2004) Cellular and physiological effects of arginine. Mini Rev Med Chem 4:823–832

    Article  CAS  PubMed  Google Scholar 

  • Tschank G, Sanders J, Baringhaus KH, Dallacker F, Kivirikko KI, Günzler V (1994) Structural requirements for the utilization of ascorbate analogues in the prolyl 4-hydroxylase reaction. Biochem J 300:75–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valayannopoulos V, Boddaert N, Mention K et al (2009) Secondary creatine deficiency in ornithine delta-aminotransferase deficiency. Mol Genet Metab 97:109–113

    Article  CAS  PubMed  Google Scholar 

  • Valle D, Simell O (2000) The hyperornithinemias. In: Scriver CR, Beaudet AL, Valle D, Sly WS (eds) The metabolic and molecular bases of Inherited disease. McGraw Hill, New York, pp 1857–1895

    Google Scholar 

  • Vasiliou V, Bairoch A, Tipton KF, Nebert DW (1999) Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics 9:421–434

    Article  CAS  PubMed  Google Scholar 

  • Vedadi M, Niesen FH, Allali-Hassani A et al (2006) Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc Natl Acad Sci USA 103:15835–15840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wagenseil JE, Mecham RP (2007) New insights into elastic fiber assembly. Birth Defects Res C Embryo Today 81:229–240

    Article  CAS  PubMed  Google Scholar 

  • Windmueller HG, Spaeth AE (1981) Source and fate of circulating citrulline. Am J Physiol 241:E473–E480

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2011) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang CS, Lu Q, Verma DP (1995) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J Biol Chem 270:20491–20496

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Association “la Vita è un Dono” for supporting the fellowship of Diego Martinelli, Isabel Pérez-Arellano for advice, and Enrique Pérez-Payá for help with CD analysis. This work was supported by grants BFU2008-05021 of the Spanish Ministry for Science (MEC and MICINN) and Prometeo/2009/051 of the Valencian Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diego Martinelli or Carlo Dionisi-Vici.

Additional information

Communicated by: Jean-Marie Saudubray

Competing interest: None declared

J. Häberle and V. Rubio contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinelli, D., Häberle, J., Rubio, V. et al. Understanding pyrroline-5-carboxylate synthetase deficiency: clinical, molecular, functional, and expression studies, structure-based analysis, and novel therapy with arginine. J Inherit Metab Dis 35, 761–776 (2012). https://doi.org/10.1007/s10545-011-9411-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-011-9411-8

Keywords

Navigation