Skip to main content
Log in

Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Proline metabolism in mammals involves two other amino acids, glutamate and ornithine, and five enzymatic activities, Δ1-pyrroline-5-carboxylate (P5C) reductase (P5CR), proline oxidase, P5C dehydrogenase, P5C synthase and ornithine-δ-aminotransferase (OAT). With the exception of OAT, which catalyzes a reversible reaction, the other four enzymes are unidirectional, suggesting that proline metabolism is purpose-driven, tightly regulated, and compartmentalized. In addition, this tri-amino-acid system also links with three other pivotal metabolic systems, namely the TCA cycle, urea cycle, and pentose phosphate pathway. Abnormalities in proline metabolism are relevant in several diseases: six monogenic inborn errors involving metabolism and/or transport of proline and its immediate metabolites have been described. Recent advances in the Human Genome Project, in silico database mining techniques, and research in dissecting the molecular basis of proline metabolism prompted us to utilize functional genomic approaches to analyze human genes which encode proline metabolic enzymes in the context of gene structure, regulation of gene expression, mRNA variants, protein isoforms, and single nucleotide polymorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GRE:

Glucocorticoid responsive element

OAT:

Ornithine-d-aminotransferase

OH-POX:

Hydroxyproline oxidase

OMIM:

Online Mendelian inheritance in man

P5C:

Δ1-Pyrroline-5-carboxylate

P5CDH:

P5C dehydrogenase

P5CS:

P5C synthase

P5CR:

P5C reductase

POX:

Proline oxidase

PRODH:

Proline dehydrogenase

SNP:

Single nucleotide polymorphism

References

  • Baumgartner MR, Hu CAA, Almashanu S, Steel G, Obie C, Aral B, Rabier D, Kamoun P, Saudubray J-M, Valle D (2000) Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new inborn error caused by a mutation in the gene encoding delta-1-pyrroline-5-carboxylate synthase. Hum Mol Gen 9:2853–2858

    Article  PubMed  CAS  Google Scholar 

  • Bender H, Almashanu S, Steel G, Hu CA, Lin WW, Willis A, Pulver A, Valle D (2005) Functional consequences of PRODH missense mutations. Am J Hum Genet 76:409–420

    Article  PubMed  CAS  Google Scholar 

  • Böck A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F (1991) Selenocysteine: the 21st amino acid. Mol Microbiol 5:515–520

    Article  PubMed  Google Scholar 

  • Brody LC, Mitchell GA, Obie C, Michaud J, Steel G, Fontaine G, Robert MF, Sipila I, Kaiser-Kupfer M, Valle D (1992) Ornithine delta aminotransferase mutations in gyrate atrophy. Allelic heterogeneity and functional consequences. J Biol Chem 267:3302–3307

    PubMed  CAS  Google Scholar 

  • Cooper SK, Pandhare J, Donald SP, Phang JM (2008) A novel function for hydroxyproline oxidase in apoptosis through generation of reactive oxygen species. J Biol Chem 283:10485–10492

    Article  PubMed  CAS  Google Scholar 

  • Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24:68–72

    Article  PubMed  CAS  Google Scholar 

  • Donald SP, Sun XY, Hu CA, Yu J, Mei JM, Valle D, Phang JM (2001) Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res 61:1810–1815

    PubMed  CAS  Google Scholar 

  • Dougherty KM, Brandriss MC, Valle D (1992) Cloning human pyrroline-5-carboxylate reductase cDNA by complementation in Saccharomyces cerevisiae. J Biol Chem 267:871–875

    PubMed  CAS  Google Scholar 

  • Flynn MP, Martin MC, Moore PT, Stafford JA, Fleming GA, Phang JM (1989) Type II hyperprolinaemia in a pedigree of Irish Travellers (nomads). Arch Dis Child 64:1699–1707

    Article  PubMed  CAS  Google Scholar 

  • Geraghty MT, Vaughn D, Nicholson AJ, Lin WW, Jimenez-Sanchez G, Obie C, Flynn MP, Valle D, Hu CAA (1998) Mutations in the delta-1-pyrroline 5-carboxylase dehydrogenase gene cause type II hyperprolinemia. Hum Mol Genet 7:1411–1415

    Article  PubMed  CAS  Google Scholar 

  • Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabasi A-L (2007) The human disease network. Proc Natl Acad Sci 104:8685–8690

    Article  PubMed  CAS  Google Scholar 

  • Hao B, Gong W, Ferguson TK, James CM, Krzycki JA, Chan MK (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296:1462–1466

    Article  PubMed  CAS  Google Scholar 

  • Hu CAA, Lin WW, Valle D (1996) Cloning, characterization and expression of cDNAs encoding human Δ1-pyrroline-5-carboxylate dehydrogenase. J Biol Chem 271:9795–9800

    Article  PubMed  CAS  Google Scholar 

  • Hu CAA, Lin WW, Obie C, Valle D (1999) Molecular enzymology of mammalian delta1-pyrroline-5-carboxylate synthase. Alternative splice donor utilization generates isoforms with different sensitivity to ornithine inhibition. J Biol Chem 274:6754–6762

    Article  PubMed  CAS  Google Scholar 

  • Hu CAA, Lin WW, Steel G, Levy H, Valle D (2001) Identification of the gene encoding hydroxyproline oxidase and delineation of mutations responsible for hyperhydroxyprolinemia. Am J Hum Genet 69:S1708

    Google Scholar 

  • Hu CAA, Donald SP, Yu J, Lin WW, Liu Z, Steel G, Valle D, Phang JM (2007) Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis. Mol Cell Biochem 295:85–92

    Article  PubMed  CAS  Google Scholar 

  • Jacquet H, Raux G, Thibaut F, Hecketsweiler B, Houy E, Demilly C, Haouzir S, Allio G, Fouldrin G, Drouin V, Bou J, Petit M, Campion D, Frébourg T (2002) PRODH mutations and hyperprolinemia in a subset of schizophrenic patients. Hum Mol Genet 11:2243–2249

    Article  PubMed  CAS  Google Scholar 

  • Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10:611–618

    Article  PubMed  CAS  Google Scholar 

  • Kim SZ, Varvogli L, Waisbren SE, Levy HL (1997) Hydroxyprolinemia: comparison of a patient and her unaffected twin sister. J Pediatr 130:437–441

    Article  PubMed  CAS  Google Scholar 

  • Kowaloff EM, Granger AS, Phang JM (1977) Glucocorticoid control of hepatic proline oxidase. Metabolism 26:893–901

    Article  PubMed  CAS  Google Scholar 

  • Kowaloff EM, Phang JM, Granger AS, Downing SJ (1978) Glucocorticoid induction of proline oxidase in LLC-RK1 cells. J Cell Physiol 97:153–159

    Article  PubMed  CAS  Google Scholar 

  • Krishnan N, Dickman MB, Becker DF (2008) Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med 44:671–681

    Article  PubMed  CAS  Google Scholar 

  • Lee PH, Shatkay H (2008) F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res 36:D820–D824

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ, Feng Z, Mak TW, You H, Jin S (2006a) Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 20:267–275

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ, Hu W, Feng Z (2006b) The P53 pathway: what questions remain to be explored? Cell Death Differ 13:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Lin WW, Hu CAA, Valle D (1996) Molecular cloning of cDNAs encoding human and mouse proline oxidase, the enzyme-deficient in type I hyperprolinemia and Pro/Re mice. Am J Hum Genet 59:A269

    Google Scholar 

  • Liu H, Abecasis GR, Heath SC, Knowles A, Demars S, Chen YJ, Roos JL, Rapoport JL, Gogos JA, Karayiorgou M (2002a) Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci U S A 99:16859–16864

  • Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML, Lenane M, Robertson B, Wijsman EM, Rapoport JL, Gogos JA, Karayiorgou M (2002b) Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 99:3717–3722

  • Liu Y, Borchert GL, Surazynski A, Hu CAA, Phang JM (2006) Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT and MEK/ERK signaling. Oncogene 25:5640–5647

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Wan G, Heaphy C, Bisoffi M, Griffith JK, Hu CAA (2007) A novel loss-of-function mutation in TP53 in an endometrial cancer cell line and uterine papillary serous carcinoma model. Mol Cell Biochem 297:179–187

    Article  PubMed  CAS  Google Scholar 

  • Lorans G, Phang JM (1981) Proline synthesis and redox regulation: differential functions of pyrroline-5-carboxylate reductase in human lymphoblastoid cell lines. Biochem Biophys Res Commun 101:1018–1025

    Article  PubMed  CAS  Google Scholar 

  • Maxwell SA, Rivera A (2003) Proline oxidase induces apoptosis in tumor cells, and its expression is frequently absent or reduced in renal carcinomas. J Biol Chem 278:9784–9789

    Article  PubMed  CAS  Google Scholar 

  • Meng Z, Lou Z, Liu Z, Hui D, Bartlam M, Rao Z (2006a) Purification, characterization, and crystallization of human pyrroline-5-carboxylate reductase. Protein Expr Purif 49:83–87

    Article  PubMed  CAS  Google Scholar 

  • Meng Z, Lou Z, Liu Z, Hui D, Bartlam M, Rao Z (2006b) Crystal structure of human pyrroline-5-carboxylate reductase. J Mol Biol 359:1364–1377

    Article  PubMed  CAS  Google Scholar 

  • Merrill MJ, Yeh GC, Phang JM (1989) Purified human erythrocyte pyrroline-5-carboxylate reductase. Preferential oxidation of NADPH. J Biol Chem 264:9352–9358

    PubMed  CAS  Google Scholar 

  • Morón JA, Abul-Husn NS, Rozenfeld R, Dolios G, Wang R, Devi LA (2007) Morphine administration alters the profile of hippocampalpostsynaptic density-associated proteins: a proteomics study focusing on endocytic proteins. Mol Cell Proteomics 6:29–42

    PubMed  Google Scholar 

  • Phang JM (1985) The regulatory functions of proline and pyrroline-5-carboxylic acid. Curr Top Cell Regul 25:91–132

    PubMed  CAS  Google Scholar 

  • Phang JM, Hu CAA, Valle D (2001) Disorders of proline and hydroxyproline metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic and molecular basis of inherited disease. McGraw Hill Press, New York, pp 1821–1838

    Google Scholar 

  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305

    Article  PubMed  CAS  Google Scholar 

  • Reeds PJ (2000) Dispensable and indispensable amino acids for humans. J Nutr 130:1835S–1840S

    PubMed  CAS  Google Scholar 

  • Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17:502–510

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan G, James CM, Krzycki JA. (2002) Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296:1459–1462

    Article  PubMed  CAS  Google Scholar 

  • Tadros SF, D’Souza M, Zettel ML, Zhu X, Waxmonsky NC, Frisina RD (2007) Glutamate-related gene expression changes with age in the mouse auditory midbrain. Brain Res 1127:1–9

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Leunissen JA, Voorrips RE, van der Linden CG, Vosman B. (2008) HaploSNPer: a web-based allele and SNP detection tool. BMC Genet 9:23

    Article  PubMed  CAS  Google Scholar 

  • Valle D, Simell O (2001) Hyperornithinemias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic and molecular basis of inherited disease. McGraw Hill Press, New York, pp 1857–1895

    Google Scholar 

  • Valle D, Goodman SI, Harris SC, Phang JM (1979) Genetic evidence for a common enzyme catalyzing the 2nd step in the degradation of proline and hydroxyproline. J Clin Invest 64:1365–1370

    Article  PubMed  CAS  Google Scholar 

  • Vasiliou V, Bairoch A, Tipton KF, Nebert DW (1999) Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics 9:421–434

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  • Vousden KH, Prives C (2005) P53 and prognosis: new insights and further complexity. Cell 120:7–10

    PubMed  CAS  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol Gastrointest Liver Physiol 272:G1382–G1390

    CAS  Google Scholar 

  • Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Comp Physiol 269:R621–R629

    CAS  Google Scholar 

  • Wu G, Bazer FW, Hu J, Johnson GA, Spencer TE (2005) Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod 72:842–850

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ, Kelly K, Watford M, Morris SM Jr (2000) A cortisol surge mediates the enhanced expression of pig intestinal pyrrolinee-5-carboxylate synthesis during weaning. J Nutr 130:1914–1919

    PubMed  CAS  Google Scholar 

  • Yoon K-A, Nakamura Y, Arakama H (2004) Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J Hum Genet 49:134–140

    Article  PubMed  CAS  Google Scholar 

  • Yuan HY, Chiou JJ, Tseng WH, Liu CH, Liu CK, Lin YJ, Wang HH, Yao A, Chen YT, Hsu CN (2006) FASTSNP: an always up-to-date and extendable service for SNP function analysisand prioritization. Nucleic Acids Res 34:W635–W641

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. K. Polyak, Harvard Medical School, for the RNA membrane that was blotted with total RNA isolated from DLD-1 cells infected with AD-p53. We also thank Mr. G. Steel and Ms. C. Obie, Johns Hopkins University School of Medicine, for their help and support. This work is supported by NM-INBRE grant (2 P20 RR016480-04), DOD PCRP (#W81XWH-05-1-0357), and NCI-RO1 (5RO1 CA106644) (to CAA. Hu), and by Howard Hughes medical Institute (to D. Valle).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-an A. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Ca.A., Bart Williams, D., Zhaorigetu, S. et al. Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes. Amino Acids 35, 655–664 (2008). https://doi.org/10.1007/s00726-008-0107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0107-9

Keywords

Navigation