Skip to main content
Log in

Arginine supplementation in four patients with X-linked creatine transporter defect

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Summary

Background

Treatment with oral creatine monohydrate has not shown efficacy in patients with creatine transporter deficiency (CRTR-D). Another therapeutic option proposed is l-arginine, the substrate for the enzyme l-arginine:glycine amidinotransferase (AGAT). We evaluate clinical characteristics and cerebral creatine replenishment after l-arginine therapy in four patients with CRTR-D.

Patients and methods

Four boys with genetically confirmed diagnosis of CRTR-D (ages 9–16 years) were supplemented with l-arginine (0.4 g/kg per day) for a period of 9 months. Treatment efficacy was evaluated by clinical and neuropsychological assessment and determination of creatine signals by brain proton magnetic resonance spectroscopy (1H-MRS).

Results

Epileptic seizures remained well controlled with antiepileptic drugs in three cases, both before and after l-arginine supplementation. Vineland Adaptive Behaviour Scale did not show any change in communication, daily living skills, socialization or motor skills, and a lack of improvement in brain 1H-MRS follow-up was observed. l-Arginine was discontinued at the end of the observation period.

Conclusions

Nine months of l-arginine supplementation did not show effectiveness in the four patients affected with CRTR-D in this protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida LS, Salomons GS, Hogenboom F, Jackobs C, Schoffelmeer AN (2006) Exocytotic release of creatine in rat brain. Synapse 60: 118–123. doi:10.1002/syn.20280.

    Article  PubMed  CAS  Google Scholar 

  • Arias A, Ormazabal A, Moreno J, et al (2006) Methods for the diagnosis of creatine deficiency syndromes: a comparative study. J Neurosci Methods 156(1–2): 305–309.

    Article  PubMed  CAS  Google Scholar 

  • Braissant O, Henry H (2008) AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: a review. J Inherit Metab Dis 31: 230–239. doi:10.1007/s10545-008-0826-9.

    Article  CAS  Google Scholar 

  • Braissant O, Henry H, Loup M, Eilers B, Bachmann C (2001) Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridation study. Brain Res Mol Brain Res 86: 193–201. doi:10.1016/S0169-328X(00)00269-2.

    Article  PubMed  CAS  Google Scholar 

  • Campistol J, Arias-Dimas A, Poo P, et al (2007) Cerebral creatine transporter deficiency: an infradiagnosed neurometabolic disease. Rev Neurol 44(6): 343–347.

    PubMed  CAS  Google Scholar 

  • Crim MC, Calloway DH, Margen S (1975) Creatine metabolism in men: urinary creatine and creatinine excretions with creatine feeding. J Nutr 105: 428–438.

    PubMed  CAS  Google Scholar 

  • deGrauw TJ, Cecil KM, Byars AW, Salomons GS, Ball WS, Jakobs C (2003) The clinical syndrome of creatine transporter deficiency. Mol Cell Biochem 244: 45–48. doi:10.1023/A:1022487218904.

    Article  PubMed  CAS  Google Scholar 

  • Gregor P, Nash SR, Caron MG, Seldin MF, Warren ST (1995) Assignment of the creatine transporter gene (SLC6A8) to human chromosome Xq28 telomeric to G6PD. Genomics 25: 332–333. doi:10.1016/0888-7543(95)80155-F.

    Article  PubMed  CAS  Google Scholar 

  • Kleefstra T, Rosenberg EH, Salomons GS, et al (2005) Progressive intestinal, neurological and psychiatric problems in two adult males with cerebral creatine deficiency caused by an SLC6A8 mutation. Clin Genet 68: 379–381. doi:10.1111/j.1399-0004.2005.00489.x.

    Article  PubMed  CAS  Google Scholar 

  • Leuzzi V, Alessandri MG, Casarano M, Battini R, Cioni G (2008) Arginine and glycine stimulate creatine synthesis in creatine transporter 1-deficient lymphoblasts. Anal Biochem 375: 153–155.

    Google Scholar 

  • Nash SR, Giros B, Kingsmore SF, et al (1994) Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Receptors Channels 2: 165–174.

    PubMed  CAS  Google Scholar 

  • Póo-Argüelles P, Arias A, Vilaseca MA, et al (2006) X-linked creatine transporter deficiency in two patients with severe mental retardation and autism. J Inherit Metab Dis 29: 220–223. doi:10.1007/s10545-006-0212-4.

    Article  PubMed  Google Scholar 

  • Rosenberg EH, Martinez-Muñoz C, Betsalel OT, et al (2007) Functional characterization of missense variants in the creatine transporter gene (SLC6A8): improved diagnostic application. Hum Mutat 28(9): 890–896. doi:10.1002/humu.20532.

    Article  PubMed  CAS  Google Scholar 

  • Salomons GS, van Dooren SJM, Verhoeven NM, et al (2001) X-linked creatine-transporter gene (SLC6A8) defect: A new creatine deficiency syndrome. Am J Hum Genet 68: 1497–1500. doi:10.1086/320595.

    Article  PubMed  CAS  Google Scholar 

  • Salomons GS, van Dooren SJM, Verhoeven NM, et al (2003) X-Linked creatine transporter defect: an overview. J Inherit Metab Dis 26: 309–318. doi:10.1023/A:1024405821638.

    Article  PubMed  CAS  Google Scholar 

  • Schulze A (2003) Creatine deficiency syndromes. Mol Cell Biochem 244: 143–150. doi:10.1023/A:1022443503883.

    Article  PubMed  CAS  Google Scholar 

  • Schulze A, Hoffmann GF, Bachert P, et al (2006) Presymptomatic treatment of neonatal guanidinoacetate methyltransferase deficiency. Neurology 67(4): 719–721.

    Article  PubMed  CAS  Google Scholar 

  • Stöckler S, Schutz PW, Salomons GS (2007) Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell Biochem 46: 149–166.

    Article  PubMed  Google Scholar 

  • Stöckler S, Holzbach U, Hanefeld F, et al (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 36(3): 409–413.

    PubMed  Google Scholar 

  • Stromberger C, Bodamer OA, Stökler S (2003) Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. J Inherit Metab Dis 26: 299–308. doi:10.1023/A:1024453704800.

    Article  PubMed  CAS  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80(3): 1107–1213.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fons.

Additional information

Communicating editor: Sylvia Stockler-Ipsiroglu

Competing interests: None declared

References to electronic databases: l-Arginine:glycine amidinotransferase deficiency: OMIM 602360. Guanidinoacetate methyltransferase deficiency: OMIM 601240. Creatine transporter deficiency: OMIM: 300036.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fons, C., Sempere, A., Arias, A. et al. Arginine supplementation in four patients with X-linked creatine transporter defect. J Inherit Metab Dis 31, 724–728 (2008). https://doi.org/10.1007/s10545-008-0902-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-008-0902-1

Keywords

Navigation