Skip to main content
Log in

Therapy through chaperones: Sense or antisense? Cystic fibrosis as a model disease

  • SSIEM SYMPOSIUM 2005
  • Published:
Journal of Inherited Metabolic Disease

Summary

Massive production and accumulation of a single abnormal protein may constitute a major toxic burden for the cell and even compromise the organism's long-term viability. Consequently, adaptation and survival have forced evolution to create ‘quality control’ mechanisms that detect, monitor, and often degrade such abnormally folded gene products, in which molecular chaperones are key players. Notwithstanding this, there are numerous examples of misfolded proteins which, in spite of being recognized as aberrant and efficiently discarded by cellular quality control, still retain some of the functional properties of their wild-type counterparts, so that their maintenance in the cell would be beneficial for the organism. Herein are described the cellular roles of molecular chaperones and some new insights on the mechanisms by which they influence the development of human diseases caused by mutations that lead to protein misfolding. A special emphasis is given to cystic fibrosis, a classical genetic disorder resulting from the retention and degradation of a mutant, albeit functional, protein by the endoplasmic reticulum quality control. This particular system has been a good example to describe the mechanisms that are likely to be shared by a number of protein substrates, to define the common characteristics of the mutants, as well as to identify the mechanistic intervenients in their retention and degradation. Finally, new approaches aimed at correcting protein folding defects are discussed, including the potential of molecular chaperones (e.g., through RNA interference) as novel therapeutic targets, and the usage of chemical or pharmacological chaperones as new therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberti S, Bohse K, Arndt V, Schmitz A, Hohfeld J (2004) The co-chaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 15: 4003–4010.

    Article  PubMed  CAS  Google Scholar 

  • Amaral MD (2004) CFTR and chaperones: processing and degradation. J Mol Neurosci 23: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Amaral MD (2005) Processing of CFTR: traversing the cellular maze—how much CFTR needs to go through to avoid cystic fibrosis? Pediatr Pulmonol 39: 479–491.

    Article  PubMed  Google Scholar 

  • Arndt V, Daniel C, Nastainczyk W, Alberti S, Hohfeld J (2005) BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol Biol Cell 16: 5891–5900.

    Article  PubMed  CAS  Google Scholar 

  • Barral JM, Broadley SA, Schaffar G, Hartl FU (2004) Roles of molecular chaperones in protein misfolding diseases. Semin Cell Dev Biol 15: 17–29.

    Article  PubMed  CAS  Google Scholar 

  • Benharouga M, Sharma M, Lukacs GL (2002) CFTR folding and maturation in cells. Methods Mol Med 70: 229–243.

    PubMed  CAS  Google Scholar 

  • Bernier V, Lagace M, Bichet DG, Bouvier M (2004) Pharmacological chaperones: potential treatment for conformational diseases. Trends Endocrinol Metab 15: 222–228.

    Article  PubMed  CAS  Google Scholar 

  • Brown CR, Hong-Brown LQ, Welch WJ (1997) Correcting temperature-sensitive protein folding defects. J Clin Invest 99: 1432–1444.

    PubMed  CAS  Google Scholar 

  • Buchner J (1999) Hsp90 & Co.-a holding for folding. Trends Biochem Sci 24: 136–141.

    Article  PubMed  CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92: 351–366.

    Article  PubMed  CAS  Google Scholar 

  • Bykov VJ, Selivanova G, Wiman KG (2003) Small molecules that reactivate mutant p53. Eur J Cancer 39: 1828–1834.

    Article  PubMed  CAS  Google Scholar 

  • Cabral CM, Liu Y, Sifers RN (2001) Dissecting glycoprotein quality control in the secretory pathway. Trends Biochem Sci 26: 619–624.

    Article  PubMed  CAS  Google Scholar 

  • Caplan AJ (1999) Hsp90's secrets unfold: new insights from structural and functional studies. Trends Cell Biol 9: 262–268.

    Article  PubMed  CAS  Google Scholar 

  • Catelli MG, Binart N, Jung-Testas I, et al (1985) The common 90-kd protein component of non-transformed ‘8S’ steroid receptors is a heat-shock protein. EMBO J 4: 3131–3135.

    PubMed  CAS  Google Scholar 

  • Cheng SH, Gregory RJ, Marshall J, et al (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63: 827–834.

    Article  PubMed  CAS  Google Scholar 

  • Cohen FE, Kelly JW (2003) Therapeutic approaches to protein-misfolding diseases. Nature 426: 905–909.

    Article  PubMed  CAS  Google Scholar 

  • Collins FS (1992) Cystic fibrosis: molecular biology and therapeutic implications. Science 256: 774–779.

    PubMed  CAS  Google Scholar 

  • Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358: 761–764.

    Article  PubMed  CAS  Google Scholar 

  • Desnick RJ (2004) Enzyme replacement and enhancement therapies for lysosomal diseases. J Inherit Metab Dis 27: 385–410.

    Article  PubMed  CAS  Google Scholar 

  • Dorner AJ, Krane MG, Kaufman RJ (1988) Reduction of endogenous GRP78 levels improves secretion of a heterologous protein in CHO cells. Mol Cell Biol 8: 4063–4070.

    PubMed  CAS  Google Scholar 

  • Ellis RJ, van der Vies SM, Hemmingsen SM (1989) The molecular chaperone concept. Biochem Soc Symp 55: 145–153.

    PubMed  CAS  Google Scholar 

  • Farinha CM, Amaral MD (2005) Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin. Mol Cell Biol 25: 5242–5252.

    Article  PubMed  CAS  Google Scholar 

  • Farinha CM, Nogueira P, Mendes F, Penque D, Amaral MD (2002) The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Biochem J 366: 797–806.

    PubMed  CAS  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70: 603–647.

    Article  PubMed  CAS  Google Scholar 

  • Frydman J, Hohfeld J (1997) Chaperones get in touch: the Hip-Hop connection. Trends Biochem Sci 22: 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Graner MW, Bigner DD (2005) Chaperone proteins and brain tumors: potential targets and possible therapeutics. Neuro-oncol 7: 260–278.

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Beere HM (2001) Apoptosis. Mostly dead. Nature 412: 133–135.

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381: 571–579.

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852–1858.

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Martin J (1995) Molecular chaperones in cellular protein folding. Curr Opin Struct Biol 5: 92–102.

    Article  PubMed  CAS  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73: 1019–1049.

    Article  PubMed  CAS  Google Scholar 

  • Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62: 349–384.

    Article  PubMed  CAS  Google Scholar 

  • Hightower LE (1980) Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J Cell Physiol 102: 407–427.

    Article  PubMed  CAS  Google Scholar 

  • Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66: 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Hohfeld J, Cyr DM, Patterson C (2001) From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep 2: 885–890.

    Article  PubMed  CAS  Google Scholar 

  • Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83: 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Jones GW, Tuite MF (2005) Chaperoning prions: the cellular machinery for propagating an infectious protein? Bioessays 27: 823–832.

    Article  PubMed  CAS  Google Scholar 

  • Klein I, Sarkadi B, Varadi A (1999) An inventory of the human ABC proteins. Biochim Biophys Acta 1461: 237–262.

    Article  PubMed  CAS  Google Scholar 

  • Lenk U, Yu H, Walter J, Gelman MS, Hartmann E, Kopito RR, Sommer T (2002) A role for mammalian Ubc 6 homologues in ER-associated degradation. J Cell Sci 115: 3007–3014.

    PubMed  CAS  Google Scholar 

  • Loo MA, Jensen TJ, Cui L, Hou Y, Chang XB, Riordan JR (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J 17: 6879–6887.

    Article  PubMed  CAS  Google Scholar 

  • Lukacs GL, Mohamed A, Kartner N, Chang XB, Riordan JR, Grinstein S (1994) Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J 13: 6076–6086.

    PubMed  CAS  Google Scholar 

  • McClellan AJ, Frydman J (2001) Molecular chaperones and the art of recognizing a lost cause. Nat Cell Biol 3: E51—E53.

    Article  PubMed  CAS  Google Scholar 

  • McCracken AA, Brodsky JL (2003) Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). Bioessays 25: 868–877.

    Article  PubMed  CAS  Google Scholar 

  • Meacham GC, Lu Z, King S, Sorscher E, Tousson A, Cyr DM (1999) The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J 18: 1492–1505.

    Article  PubMed  CAS  Google Scholar 

  • Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3: 100–105.

    Article  PubMed  CAS  Google Scholar 

  • Mendes F, Farinha CM, Roxo RM, et al (2004) Antibodies for CFTR studies. J Cyst Fibros 3 (Supplement 2):69–72.

    Article  PubMed  CAS  Google Scholar 

  • Mendes F, Wakefield J, Bachhuber T, et al (2005) Establishment and characterization of a novel polarized MDCK epithelial cellular model for CFTR studies. Cell Physiol Biochem 16: 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Morello JP, Salahpour A, Laperriere A, et al (2000) Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 105: 887–895.

    Article  PubMed  CAS  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6: 11–22.

    Article  PubMed  CAS  Google Scholar 

  • 49Oda Y, Hosokawa N, Wada I, Nagata K (2003) EDEM as an acceptor of terminallymisfolded glycoproteins released from calnexin. Science 299: 1394–1397.

    Article  PubMed  CAS  Google Scholar 

  • Pandey P, Saleh A, Nakazawa A, et al (2000) Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19: 4310–4322.

    Article  PubMed  CAS  Google Scholar 

  • Pardue ML (1988) The heat shock response in biology and human disease: a meeting review. Genes Dev 2: 783–785.

    PubMed  CAS  Google Scholar 

  • Pind S, Riordan JR, Williams DB (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 269: 12784–12788.

    PubMed  CAS  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228: 111–133.

    CAS  Google Scholar 

  • Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90: 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Qu BH, Thomas PJ (1996) Alteration of the cystic fibrosis transmembrane conductance regulator folding pathway. J Biol Chem 271: 7261–7264.

    Article  PubMed  CAS  Google Scholar 

  • Riordan JR (1993) The cystic fibrosis transmembrane conductance regulator. Annu Rev Physiol 55: 609–630.

    Article  PubMed  CAS  Google Scholar 

  • Riordan JR (1999) Cystic fibrosis as a disease of misprocessing of the cystic fibrosis transmembrane conductance regulator glycoprotein. Am J Hum Genet 64: 1499–1504.

    Article  PubMed  CAS  Google Scholar 

  • Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. N Engl J Med 352: 1992–2001.

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 271: 635–638.

    Article  PubMed  CAS  Google Scholar 

  • Tatzelt J, Prusiner SB, Welch WJ (1996) Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J 15: 6363–6373.

    PubMed  CAS  Google Scholar 

  • Ulloa-Aguirre A, Janovick JA, Brothers SP, Conn PM (2004) Pharmacologic rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic 5: 821–837.

    Article  PubMed  CAS  Google Scholar 

  • Varga K, Jurkuvenaite A, Wakefield J, et al (2004) Efficient intracellular processing of the endogenous cystic fibrosis transmembrane conductance regulator in epithelial cell lines. J Biol Chem 279: 22578–22584.

    Article  PubMed  CAS  Google Scholar 

  • Verkman AS (2004) Drug discovery in academia. Am J Physiol Cell Physiol 286: C465–C474.

    Article  PubMed  CAS  Google Scholar 

  • Wang SM, Khandekar JD, Kaul KL, Winchester DJ, Morimoto RI (1999) A method for the quantitative analysis of human heat shock gene expression using a multiplex RT-PCR assay. Cell Stress Chaperones 4: 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin—proteasome pathway. Cell 83: 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90—a relay team for protein folding. Rev Physiol Biochem Pharmacol 151: 1–44.

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ (2004) Role of quality control pathways in human diseases involving protein misfolding. Semin Cell Dev Biol 15: 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1: 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Welsh MJ, Tsui L-C, Boat TF, Beaudet AL (1996) Cystic fibrosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 3799–3876.

    Google Scholar 

  • Westerheide SD, Bosman JD, Mbadugha BN, et al (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279: 56053–56060.

    Article  PubMed  CAS  Google Scholar 

  • Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5: 761–772.

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Janich S, Cohn JA, Wilson JM (1993) The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc Natl Acad Sci USA 90: 9480–9484.

    Article  PubMed  CAS  Google Scholar 

  • Zhang XM, Wang XT, Yue H, et al (2003a) Organic solutes rescue the functional defect in delta F508 cystic fibrosis transmembrane conductance regulator. J Biol Chem 278: 51232–51242.

    Article  CAS  Google Scholar 

  • Zhang Z, Ferraris JD, Brooks HL, Brisc I, Burg MB (2003b) Expression of osmotic stress-related genes in tissues of normal and hyposmotic rats. Am J Physiol Renal Physiol 285: F688–F693.

    CAS  Google Scholar 

  • Younger JM, Ren HY, Chen L, Fan CY, Fields A, Patterson C, Cyr DM (2004) A foldable CFTR (Delta) 7508 biogenic intermediate accummulates upon inhibition of the Hsc70-CHIP E3 ubiquitin ligase. J Cell Biol 167: 1075–1085.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarida D. Amaral.

Additional information

Communicating editor: Jean-Marie Saudubray

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaral, M.D. Therapy through chaperones: Sense or antisense? Cystic fibrosis as a model disease. J Inherit Metab Dis 29, 477–487 (2006). https://doi.org/10.1007/s10545-006-0251-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-006-0251-x

Keywords

Navigation