Skip to main content

Advertisement

Log in

Proteasome-Associated Syndromes: Updates on Genetics, Clinical Manifestations, Pathogenesis, and Treatment

  • Review
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

The ubiquitin–proteasome system (UPS) has a critical role in post-translational protein modification that is essential for the maintenance of all cellular functions, including immune responses. The proteasome complex is ubiquitously expressed and is responsible for degradation of short-lived structurally abnormal, misfolded and not-needed proteins that are targeted for degradation via ubiquitin conjugation. Over the last 14 years, an increasing number of human diseases have been linked to pathogenic variants in proteasome subunits and UPS regulators. Defects of the proteasome complex or its chaperons – which have a regulatory role in the assembly of the proteasome – disrupt protein clearance and cellular homeostasis, leading to immune dysregulation, severe inflammation, and neurodevelopmental disorders in humans. Proteasome-associated diseases have complex inheritance, including monogenic, digenic and oligogenic disorders and can be dominantly or recessively inherited. In this review, we summarize the current known genetic causes of proteasomal disease, and discuss the molecular pathogenesis of these conditions based on the function and cellular expression of mutated proteins in the proteasome complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Rousseau A, Bertolotti A. Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Bio. 2018;19:697–712.

    Article  CAS  Google Scholar 

  2. Torrelo A. CANDLE syndrome as a paradigm of proteasome-related autoinflammation. Front Immunol. 2017;8:927.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ohmura K. Nakajo-Nishimura syndrome and related proteasome-associated autoinflammatory syndromes. J Inflamm Res. 2019;12:259–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD, Sousa AB, et al. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genetics. 2010;87:866–72.

    Article  CAS  Google Scholar 

  5. Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T, Mizushima T, et al. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc National Acad Sci. 2011;108:14914–9.

    Article  CAS  Google Scholar 

  6. Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E, Zhou Q, et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest. 2015;125:4196–211.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kataoka S, Kawashima N, Okuno Y, Muramatsu H, Miwata S, Narita K, et al. Successful treatment of a novel type I interferonopathy due to a de novo PSMB9 gene mutation with a Janus kinase inhibitor. J Allergy Clin Immun. 2021;148:639–44.

    Article  CAS  PubMed  Google Scholar 

  8. Kanazawa N, Hemmi H, Kinjo N, Ohnishi H, Hamazaki J, Mishima H, et al. Heterozygous missense variant of the proteasome subunit β-type 9 causes neonatal-onset autoinflammation and immunodeficiency. Nat Commun. 2021;12:6819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarrabay G, Méchin D, Salhi A, Boursier G, Rittore C, Crow Y, et al. PSMB10, the last immunoproteasome gene missing for PRAAS. J Allergy Clin Immun. 2019;145:1015-1017.e6.

    Article  PubMed  Google Scholar 

  10. Verhoeven D, Schonenberg-Meinema D, Ebstein F, Papendorf JJ, Baars PA, van Leeuwen EMM, et al. Hematopoietic stem cell transplantation in a patient with proteasome-associated autoinflammatory syndrome (PRAAS). J Allergy Clin Immun. 2022;149:1120-1127.e8.

    Article  CAS  PubMed  Google Scholar 

  11. de Jesus AA, Brehm A, VanTries R, Pillet P, Parentelli A-S, Sanchez GAM, et al. Novel proteasome assembly chaperone mutations in PSMG2/PAC2 cause the autoinflammatory interferonopathy CANDLE/PRAAS4. J Allergy Clin Immun. 2019;143:1939-1943.e8.

    Article  PubMed  Google Scholar 

  12. Poli MC, Ebstein F, Nicholas SK, de Guzman MM, Forbes LR, Chinn IK, et al. Heterozygous truncating variants in POMP escape nonsense-mediated decay and cause a unique immune dysregulatory syndrome. Am J Hum Genetics. 2018;102:1126–42.

    Article  CAS  Google Scholar 

  13. Meinhardt A, Ramos PC, Dohmen RJ, Lucas N, Lee-Kirsch MA, Becker B, et al. Curative treatment of POMP-Related Autoinflammation and Immune Dysregulation (PRAID) by hematopoietic stem cell transplantation. J Clin Immunol. 2021;41:1664–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Martinez C, Ebstein F, Nicholas SK, Guzman MD, Forbes LR, Delmonte OM, et al. HSCT corrects primary immunodeficiency and immune dysregulation in patients with POMP-related autoinflammatory disease. Blood. 2021;138:1896–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ansar M, Ebstein F, Özkoç H, Paracha SA, Iwaszkiewicz J, Gesemann M, et al. Biallelic variants in PSMB1 encoding the proteasome subunit β6 cause impairment of proteasome function, microcephaly, intellectual disability, developmental delay and short stature. Hum Mol Genet. 2020;29:1132–43.

    Article  CAS  PubMed  Google Scholar 

  16. Aharoni S, Proskorovski-Ohayon R, Krishnan RK, Yogev Y, Wormser O, Hadar N, et al. PSMC1 variant causes a novel neurological syndrome. Clin Genet. 2022;102:324–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kröll-Hermi A, Ebstein F, Stoetzel C, Geoffroy V, Schaefer E, Scheidecker S, et al. Proteasome subunit PSMC3 variants cause neurosensory syndrome combining deafness and cataract due to proteotoxic stress. Embo Mol Med. 2020;12:e11861.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ebstein F, Küry S, Most V, Rosenfelt C, Scott-Boyer M-P, van Woerden GM, et al. PSMC3 proteasome subunit variants are associated with neurodevelopmental delay and type I interferon production. Sci Transl Med. 2023;15:eabo3189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Papendorf JJ, Ebstein F, Alehashemi S, Piotto DGP, Kozlova A, Terreri MT, et al. Identification of eight novel proteasome variants in five unrelated cases of proteasome-associated autoinflammatory syndromes (PRAAS). Front Immunol. 2023;14:1190104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Küry S, Besnard T, Ebstein F, Khan TN, Gambin T, Douglas J, et al. De novo disruption of the proteasome regulatory subunit PSMD12 causes a syndromic neurodevelopmental disorder. Am J Hum Genetics. 2017;100:352–63.

    Article  Google Scholar 

  21. Yan K, Zhang J, Lee PY, Tao P, Wang J, Wang S, Zhou Q, Dong M. Haploinsufficiency of PSMD12 causes proteasome dysfunction and subclinical autoinflammation. Arthritis Rheumatol. 2022;74(6):1083–1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khalil R, Kenny C, Hill RS, Mochida GH, Nasir R, Partlow JN, et al. PSMD12 haploinsufficiency in a neurodevelopmental disorder with autistic features. Am J Medical Genetics Part B Neuropsychiatric Genetics. 2018;177:736–45.

    Article  CAS  Google Scholar 

  23. Palumbo P, Palumbo O, Muro ED, Leone MP, Castellana S, Biagini T, et al. Expanding the clinical and molecular spectrum of PSMD12-Related neurodevelopmental syndrome: an additional patient and review. Arch Clin Med Case Rep. 2019;(2019):250–260.

  24. Naud M-E, Tosca L, Martinovic J, Saada J, Métay C, Drévillon L, et al. Prenatal Diagnosis of a 2.5 Mb De Novo 17q24.1q24.2 Deletion Encompassing KPNA2 and PSMD12 Genes in a Fetus with Craniofacial Dysmorphism, Equinovarus Feet, and Syndactyly. Case Rep Genet. 2017;2017:7803136.

    PubMed  PubMed Central  Google Scholar 

  25. Isidor B, Ebstein F, Hurst A, Vincent M, Bader I, Rudy NL, et al. Stankiewicz-Isidor syndrome: expanding the clinical and molecular phenotype. Genet Med. 2022;24:179–91.

    Article  CAS  PubMed  Google Scholar 

  26. Tao P, Wang S, Ozen S, Lee PY, Zhang J, Wang J, et al. Deubiquitination of proteasome subunits by OTULIN regulates type I IFN production. Sci Adv. 2021;7:eabi6794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai WL, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci. 2016;113:10127–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo Y, Jiang F, Kong L, Wu H, Zhang H, Chen X, et al. OTUD5 promotes innate antiviral and antitumor immunity through deubiquitinating and stabilizing STING. Cell Mol Immunol. 2021;18:1945–55.

    Article  CAS  PubMed  Google Scholar 

  29. Beck DB, Basar MA, Asmar AJ, Thompson JJ, Oda H, Uehara DT, et al. Linkage-specific deubiquitylation by OTUD5 defines an embryonic pathway intolerant to genomic variation. Sci Adv. 2021;7:eabe2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Santiago-Sim T, Burrage LC, Ebstein F, Tokita MJ, Miller M, Bi W, et al. Biallelic variants in OTUD6B cause an intellectual disability syndrome associated with seizures and dysmorphic features. Am J Hum Genetics. 2017;100:676–88.

    Article  CAS  Google Scholar 

  31. Romero-Ibarguengoitia ME, Cantú-Reyna C, Gutierrez-González D, Cruz-Camino H, González-Cantú A, Sánchez MAS. Comparison of genetic variants and manifestations of OTUD6B-related disorder: the first Mexican case. J Investig Med High Impact Case Rep. 2020;8:2324709620957777.

    PubMed  PubMed Central  Google Scholar 

  32. Phetthong T, Khongkrapan A, Jinawath N, Seo G-H, Wattanasirichaigoon D. Compound heterozygote of point mutation and chromosomal microdeletion involving OTUD6B coinciding with ZMIZ1 variant in syndromic intellectual disability. Genes-Basel. 2021;12:1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abdel-Salam GMH, Abdel-Hamid MS, Sayed ISM, Zechner U, Bolz HJ. OTUD6B-associated intellectual disability: novel variants and genetic exclusion of retinal degeneration as part of a refined phenotype. J Hum Genet. 2022;67:55–64.

    Article  CAS  PubMed  Google Scholar 

  34. Straniero L, Rimoldi V, Soldà G, Bellini M, Biasucci G, Asselta R, et al. First replication of the involvement of OTUD6B in intellectual disability syndrome with seizures and dysmorphic features. Front Genet. 2018;9:464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cingöz S, Soydemir D, Öner TÖ, Karaca E, Özden B, Kurul SH, et al. Novel biallelic variants affecting the OTU domain of the gene OTUD6B associate with severe intellectual disability syndrome and molecular dynamics simulations. Eur J Med Genet. 2022;65:104497.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Suzuki H, Inaba M, Yamada M, Uehara T, Takenouchi T, Mizuno S, et al. Biallelic loss of OTUD7A causes severe muscular hypotonia, intellectual disability, and seizures. Am J Med Genet A. 2021;185:1182–6.

    Article  CAS  PubMed  Google Scholar 

  37. Garret P, Ebstein F, Delplancq G, Dozieres-Puyravel B, Boughalem A, Auvin S, et al. Report of the first patient with a homozygous OTUD7A variant responsible for epileptic encephalopathy and related proteasome dysfunction. Clin Genet. 2020;97:567–75.

    Article  CAS  PubMed  Google Scholar 

  38. Oda H, Beck DB, Kuehn HS, Moura NS, Hoffmann P, Ibarra M, et al. Second case of HOIP deficiency expands clinical features and defines inflammatory transcriptome regulated by LUBAC. Front Immunol. 2019;10:479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davidson S, Yu C-H, Steiner A, Ebstein F, Baker PJ, Jarur-Chamy V, et al. Protein kinase R is an innate immune sensor of proteotoxic stress via accumulation of cytoplasmic IL-24. Sci Immunol. 2022;7:eabi6763.

    Article  CAS  PubMed  Google Scholar 

  40. Patel PN, Hunt R, Pettigrew ZJ, Shirley JB, Vogel TP, Guzman MM. Successful treatment of chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome with tofacitinib. Pediatr Dermatol. 2021;38:528–9.

    Article  PubMed  Google Scholar 

  41. Jia T, Zheng Y, Feng C, Yang T, Geng S. A Chinese case of Nakajo-Nishimura syndrome with novel compound heterozygous mutations of the PSMB8 gene. BMC Med Genet. 2020;21:126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boyadzhiev M, Marinov L, Boyadzhiev V, Iotova V, Aksentijevich I, Hambleton S. Disease course and treatment effects of a JAK inhibitor in a patient with CANDLE syndrome. Pediatr Rheumatol. 2019;17:19.

    Article  CAS  Google Scholar 

  43. Shi X, Xiang X, Wang Z, Ma L, Xu Z. Chinese case of Nakajo-Nishimura syndrome with a novel mutation of the PSMB8 gene. J Dermatology. 2019;46:e160–1.

    Article  Google Scholar 

  44. Al-Mayouf SM, AlSaleem A, AlMutairi N, AlSonbul A, Alzaid T, Alazami AM, et al. Monogenic interferonopathies: phenotypic and genotypic findings of CANDLE syndrome and its overlap with C1q deficient SLE. Int J Rheum Dis. 2018;21:208–13.

    Article  PubMed  Google Scholar 

  45. Contreras-Cubas C, Cárdenas-Conejo A, Rodríguez-Velasco A, García-Ortiz H, Orozco L, Baca V. A homozygous mutation in the PSMB8 gene in a case with proteasome-associated autoinflammatory syndrome. Scand J Rheumatol. 2017;47:1–4.

    Google Scholar 

  46. Cavalcante MPV, Brunelli JB, Miranda CC, Novak GV, Malle L, Aikawa NE, et al. CANDLE syndrome: chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature—a rare case with a novel mutation. Eur J Pediatr. 2016;175:735–40.

    Article  CAS  PubMed  Google Scholar 

  47. Kluk J, Rustin M, Brogan PA, Omoyinmi E, Rowczenio DM, Willcocks LC, et al. Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature syndrome: a report of a novel mutation and review of the literature. Brit J Dermatol. 2014;170:215–7.

    Article  CAS  Google Scholar 

  48. Kunimoto K, Kimura A, Uede K, Okuda M, Aoyagi N, Furukawa F, et al. A new infant case of Nakajo-Nishimura syndrome with a genetic mutation in the immunoproteasome subunit: an overlapping entity with JMP and CANDLE syndrome related to PSMB8 mutations. Dermatology. 2013;227:26–30.

    Article  PubMed  Google Scholar 

  49. Liu Y, Ramot Y, Torrelo A, Paller AS, Si N, Babay S, et al. Mutations in proteasome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheumatism. 2012;64:895–907.

    Article  CAS  PubMed  Google Scholar 

  50. Ramot Y, Czarnowicki T, Maly A, Navon-Elkan P, Zlotogorski A. Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature syndrome: a case report. Pediatr Dermatol. 2011;28:538–41.

    Article  PubMed  Google Scholar 

  51. Torrelo A, Patel S, Colmenero I, Gurbindo D, Lendínez F, Hernández A, et al. Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome. J Am Acad Dermatol. 2010;62:489–95.

    Article  PubMed  Google Scholar 

  52. Kitamura A, Maekawa Y, Uehara H, Izumi K, Kawachi I, Nishizawa M, et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest. 2011;121:4150–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Jesus AA, Hou Y, Brooks S, Malle L, Biancotto A, Huang Y, et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J Clin Invest. 2019;130:1669–82.

    Article  Google Scholar 

  54. Miyamoto T, Honda Y, Izawa K, Kanazawa N, Kadowaki S, Ohnishi H, et al. Assessment of type I interferon signatures in undifferentiated inflammatory diseases: a Japanese multicenter experience. Front Immunol. 2022;13:905960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gatz SA, Salles D, Jacobsen E, Dörk T, Rausch T, Aydin S, et al. MCM3AP and POMP mutations cause a DNA-repair and DNA-damage-signaling defect in an immunodeficient child. Hum Mutat. 2016;37:257–68.

    Article  CAS  PubMed  Google Scholar 

  56. Dahlqvist J, Klar J, Tiwari N, Schuster J, Törmä H, Badhai J, et al. A single-nucleotide deletion in the POMP 5′ UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis. Am J Hum Genet. 2010;86:596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morice-Picard F, Jonca N, Pichery M, Mermin D, Leauté-Labrèze C, Taïeb A, et al. KLICK syndrome: recognizable phenotype and hot-spot POMP mutation. J Eur Acad Dermatol Venereol. 2017;31:e154–6.

    Article  CAS  PubMed  Google Scholar 

  58. Onnis G, Bourrat E, Jonca N, Dreyfus I, Severino-Freire M, Pichery M, et al. KLICK syndrome: an unusual phenotype. Br J Dermatol. 2018;178:1445–6.

    Article  CAS  PubMed  Google Scholar 

  59. Arimochi H, Sasaki Y, Kitamura A, Yasutomo K. Differentiation of preadipocytes and mature adipocytes requires PSMB8. Sci Rep. 2016;6:26791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tanaka K. The proteasome: overview of structure and functions. Proc Jpn Acad Ser B. 2009;85:12–36.

    Article  CAS  Google Scholar 

  61. Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–47.

    Article  CAS  PubMed  Google Scholar 

  62. Murata S, Takahama Y, Kasahara M, Tanaka K. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol. 2018;19:923–31.

    Article  CAS  PubMed  Google Scholar 

  63. Griffin TA, Nandi D, Cruz M, Fehling HJ, Kaer LV, Monaco JJ, et al. Immunoproteasome assembly: cooperative incorporation of interferon γ (IFN-γ)–inducible subunits. J Exp Med. 1998;187:97–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yasutomo K. Dysregulation of immunoproteasomes in autoinflammatory syndromes. Int Immunol. 2018;31:631–7.

    Article  Google Scholar 

  65. Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E, Zhou Q, et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest. 2016;126:795–795.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ebstein F, Küry S, Most V, Rosenfelt C, Scott-Boyer M-P, van Woerden GM, et al. De novo variants in the PSMC3 proteasome AAA-ATPase subunit gene cause neurodevelopmental disorders associated with type I interferonopathies. Medrxiv. 2021;2021.12.07.21266342.

  67. Kim H, de Jesus AA, Brooks SR, Liu Y, Huang Y, VanTries R, et al. Development of a validated interferon score using NanoString technology. J Interf Cytokine Res. 2018;38:171–85.

    Article  CAS  Google Scholar 

  68. Rice GI, Forte GMA, Szynkiewicz M, Chase DS, Aeby A, Abdel-Hamid MS, et al. Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 2013;12:1159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rice GI, Melki I, Frémond M-L, Briggs TA, Rodero MP, Kitabayashi N, et al. Assessment of type I interferon signaling in pediatric inflammatory disease. J Clin Immunol. 2017;37:123–32.

    Article  CAS  PubMed  Google Scholar 

  70. McDermott A, Jacks J, Kessler M, Emanuel PD, Gao L. Proteasome-associated autoinflammatory syndromes: advances in pathogeneses, clinical presentations, diagnosis, and management. Int J Dermatol. 2015;54:121–9.

    Article  PubMed  Google Scholar 

  71. McDermott A, Jesus AA, Liu Y, Kim P, Jacks J, Sanchez GAM, et al. A case of proteasome-associated auto-inflammatory syndrome with compound heterozygous mutations. J Am Acad Dermatol. 2013;69:e29-32.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Treise I, Huber EM, Klein-Rodewald T, Heinemeyer W, Grassmann SA, Basler M, et al. Defective immuno- and thymoproteasome assembly causes severe immunodeficiency. Sci Rep-uk. 2018;8:5975.

    Article  Google Scholar 

  73. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107:881–91.

    Article  CAS  PubMed  Google Scholar 

  74. Sanchez GAM, Reinhardt A, Ramsey S, Wittkowski H, Hashkes PJ, Berkun Y, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Investig. 2018;128:3041–52.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kim H, Brooks KM, Tang CC, Wakim P, Blake M, Brooks SR, et al. Pharmacokinetics, pharmacodynamics, and proposed dosing of the oral JAK1 and JAK2 inhibitor baricitinib in pediatric and young adult CANDLE and SAVI patients. Clin Pharmacol Ther. 2018;104:364–73.

    Article  CAS  PubMed  Google Scholar 

  76. Alehashemi S, Baumgardner A, Shakoory B, Jesus AA de, Park S, Uss K, et al. Anifrolumab normalizes the type I interferon signature in a cohort of patients with type I interferonopathies [abstract]. Arthritis Rheumatol. 2023;75(suppl 9). https://acrabstracts.org/abstract/anifrolumab-normalizes-the-type-i-interferon-signature-in-a-cohort-of-patients-with-type-i-interferonopathies/. Accessed 21 Mar 2024.

  77. Jafarpour S, Suddock J, Hawes D, Santoro JD. Neuropathologic impacts of JAK inhibitor treatment in Aicardi-Goutières syndrome. J Clin Immunol. 2023;44:68.

    Article  Google Scholar 

  78. Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997;15:70–3.

    Article  CAS  PubMed  Google Scholar 

  79. Cheon S, Kaur K, Nijem N, Tuncay IO, Kumar P, Dean M, et al. The ubiquitin ligase UBE3B, disrupted in intellectual disability and absent speech, regulates metabolic pathways by targeting BCKDK. Proc Natl Acad Sci. 2019;116:3662–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Qi L, Xu X, Qi X. The giant E3 ligase HUWE1 is linked to tumorigenesis, spermatogenesis, intellectual disability, and inflammatory diseases. Front Cell Infect Microbiol. 2022;12:905906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moortgat S, Berland S, Aukrust I, Maystadt I, Baker L, Benoit V, et al. HUWE1 variants cause dominant X-linked intellectual disability: a clinical study of 21 patients. Eur J Hum Genet. 2018;26:64–74.

    Article  CAS  PubMed  Google Scholar 

  82. Fountain MD, Oleson DS, Rech ME, Segebrecht L, Hunter JV, McCarthy JM, et al. Pathogenic variants in USP7 cause a neurodevelopmental disorder with speech delays, altered behavior, and neurologic anomalies. Genet Med. 2019;21:1797–807.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Meira JGC, Magalhães BS, Ferreira IBB, Tavares DF, Kobayashi GS, Leão EKEA. Novel USP9X variant associated with syndromic intellectual disability in a female: a case study and review. Am J Méd Genet Part A. 2021;185:1569–74.

    Article  PubMed  Google Scholar 

  84. Homan CC, Kumar R, Nguyen LS, Haan E, Raymond FL, Abidi F, et al. Mutations in USP9X are associated with X-linked intellectual disability and disrupt neuronal cell migration and growth. Am J Hum Genet. 2014;94:470–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Poli MC. Proteasome disorders and inborn errors of immunity. Immunol Rev. 2024;322(1):283–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The works of QZ were supported by grants 82225022, 32141004 and 32321002 from The National Natural Science Foundation of China. The works of XY were supported by Hundred-Talent Program of Zhejiang University. The works of PT were supported by grants 82201926 from The National Natural Science Foundation of China, BX2021259 and 2021M702852 from China Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

JZ and PT wrote the original draft, drew the figures and organized the table. XY provided valuable comments and modified the manuscript. IA, NTD and QZ reviewed and approved the final version of the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Panfeng Tao, Xiaomin Yu or Qing Zhou.

Ethics declarations

Ethics Approval/Consent to Participate/Consent for Publication

Not applicable as a review manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Tao, P., Deuitch, N.T. et al. Proteasome-Associated Syndromes: Updates on Genetics, Clinical Manifestations, Pathogenesis, and Treatment. J Clin Immunol 44, 88 (2024). https://doi.org/10.1007/s10875-024-01692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10875-024-01692-y

Keywords

Navigation