Skip to main content
Log in

Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper proposes a cross-shaped micromixer featuring a pair barrier within the mixing channel. The proposed device obtains a rapid mixing of two sample fluids by means of the electrokinetic instability-induced shedding effects which are produced when a DC electric field of an appropriate intensity is applied. The proposed device uses a single high-voltage power source to simultaneously drive and mix the sample fluids. The effectiveness of the mixer is characterized experimentally as a function of the applied electric field intensity and the extent to which a pair barrier obstruct the mixing channel. The experimental results indicate that the mixing performance reaches 96% at a cross-section located 1 mm downstream of the cross-junction when an electric field of 300 V/cm is applied. The micromixing method presented in this study provides a simple low-cost solution to mixing problems in lab-on-a-chip systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Biddiss, D. Erickson, and D. Li, Analytical Chemistry 76, 3208 (2004).

    Article  Google Scholar 

  • B.J. Burke and F.E. Regnier, Analytical Chemistry 75, 1786 (2003).

    Article  Google Scholar 

  • C.C. Chang and R.J. Yang, Journal of Micromechanics and Microengineering 14, 550 (2004).

    Article  Google Scholar 

  • C.H. Chen, H. Lin, S.K. Lele, and J.G. Santiago, Journal of Fluid Mechanics 524, 263 (2005).

    Article  MATH  Google Scholar 

  • J.T. Coleman and D. Sinton, Microfluidics and Nanofluidics 1, 319 (2005).

    Article  Google Scholar 

  • D. Erickson, Microfluidics and Nanofluidics 12, 310 (2005).

    Google Scholar 

  • D. Ericson and D. Li, Langmuir 18, 1883 (2002).

    Article  Google Scholar 

  • L.M. Fu and C.H. Lin, Analytical Chemistry 75, 5790 (2003).

    Article  Google Scholar 

  • L.M. Fu, R.J. Yang, G.B. Lee, and H.H. Liu, Analytical Chemistry 74, 5084 (2002).

    Article  Google Scholar 

  • L.M. Fu and C.H. Lin, Electrophoresis 25, 3652 (2004).

    Article  Google Scholar 

  • L.M. Fu, R.J. Yang, G.B. Lee, and Y.J. Pan, Electrophoresis 24, 3026 (2003).

    Article  Google Scholar 

  • L.M. Fu, R.J. Yang, C.H. Lin, G.B. Lee, and Y.J. Pan, Analytica Chimica Acta 507, 163 (2004).

    Article  Google Scholar 

  • L.M. Fu, R.J. Yang, C.H. Lin, and Y.S. Chien, Electrophoresis 26, 1814 (2005).

    Article  Google Scholar 

  • Y. Gao, G. Hu, F.Y.H. Lin, P.M. Sherman, and D. Li, Biomedical Microdevices 7(4), 301 (2005).

  • S. Hardt, H. Pennemann, and F. Schönfeld, Microfluidics and Nanofluidics 2, 237 (2006).

    Article  Google Scholar 

  • B. He, B.J. Burke, X. Zhang, R. Zhang, and F.E. Regnier, Analytical Chemistry 73, 1942 (2001).

    Article  Google Scholar 

  • Y. Hu, J.S.H. Lee, C. Werner, and D. Li, Microfluidics and Nanofluidics 2, 141 (2006).

    Article  Google Scholar 

  • T.J. Johnson, D. Ross, and L.E. Locascio, Analytical Chemistry 74, 45 (2002).

    Article  Google Scholar 

  • T. Kamei, N.M. Toriello, E.T. Lagally, R.G. Blazej, J.R. Scherer, R.A. Street, and R.A. Mathies, Biomedical Microdevices 7(2), 147 (2005).

    Google Scholar 

  • D.J. Kim, H.J. Oh, T.H. Park, J.B. Choo, and S.H. Lee, Analyst 130, 293 (2005).

    Article  Google Scholar 

  • C.Y. Lee, C.H. Lin, and L.M. Fu, Analyst 129, 931 (2005).

    Article  Google Scholar 

  • C.Y. Lee, C.F. Lin, M.F. Hung, R.H. Ma, C.H. Tsai, C.H. Lin, and L.M. Fu, Materials Science Forum 505–507, 391 (2006).

    Article  Google Scholar 

  • C.H. Lin, L.M. Fu, and Y.S. Chien, Analytical Chemistry 76, 5265 (2004).

    Article  Google Scholar 

  • J.Y. Lin, L.M. Fu, and R.J. Yang, Journal of Micromechanics and Microengineering 12, 955 (2002).

    Article  Google Scholar 

  • C.H. Lin, C.H. Tsai, and L.M. Fu, Journal of Micromechanics and Micromachining 15, 935 (2005).

    Google Scholar 

  • C.H. Lin, R.J. Yang, C.H. Tai, C.Y. Lee, and L.M. Fu, Journal of Micromechanics and Microengineering 14, 639 (2004).

    Article  Google Scholar 

  • R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, Journal of Microelectromechanical System 9, 190 (2000).

    Article  Google Scholar 

  • J. Melin, G. Giménez, N. Roxhed, W. van der Wijngaart, and G. Stemme, Lab on a Chip 4, 214 (2004).

    Article  Google Scholar 

  • N.T. Nguyen and X. Huang, Microfluidics and Nanofluidics 1, 373 (2005).

    Article  Google Scholar 

  • N.T. Nguyen and X. Huang, Biomedical Microdevices 8, 133 (2006).

    Article  Google Scholar 

  • X. Niu and Y.K. Lee, Journal of Micromechanics and Micromachining 13, 454 (2003).

    Google Scholar 

  • M.H. Oddy and J.G. Santiago, Physics of Fluids 17, 064108 (2005).

    Article  Google Scholar 

  • M.H. Oddy, J.G. Santiago, and J.C. Mikkelsen, Analytical Chemistry 73, 5822 (2001).

    Article  Google Scholar 

  • J. Park, S.M. Shin, K.Y. Huh, and I.S. Kang, Physics of Fluids 17, 118101 (2005).

    Article  Google Scholar 

  • S.M. Shin, I.S. Kang, and Y.K. Cho, Journal of Micromechanics and Microengineering 15, 455 (2005).

    Article  Google Scholar 

  • Y.S. Shin, K. Cho, S.H. Lim, S. Chung, S.J. Park, C. Chung, D.C. Han, and J.K. Chang, Journal of Micromechanics and Micromachining 13, 768 (2003).

    Google Scholar 

  • B.D. Storey, B.S. Tilley, H. Lin, and J. G. Santiago, Physics of Fluids 17, 018103 (2005).

    Article  Google Scholar 

  • H. Wang, P. Iovenitti, E. Harvey, and S. Masood, Journal of Micromechanics and Micromachining 13, 801 (2003).

    Google Scholar 

  • J. Wang, Z. Chen, M. Mauk, K. Hong, M. Li, S. Yang, and H.H. Bau, Biomedical Microdevices 7(4), 313 (2005).

  • K. Wang, S. Yue, L. Wang, A. Jin, C. Gu, P. Wang, Y. Feng, Y. Wang, and H. Niu, Microfluidics and Nanofluidics 2, 85 (2006).

    Article  Google Scholar 

  • C.H. Wu and R.J.Yang, Biomedical Microdevices 8, 119 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  • C.W. Wei, J.Y. Cheng, and T.H. Young, Biomedical Microdevices 8, 65 (2006).

    Article  Google Scholar 

  • Z. Wu and N.T. Nguyen, Biomedical Microdevices 7(1), 13 (2005).

  • Q. Xiang, B. Xu, R. Fu, and D. Li, Biomedical Microdevices 7(4), 273 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lung-Ming Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, MZ., Yang, RJ., Tai, CH. et al. Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Biomed Microdevices 8, 309–315 (2006). https://doi.org/10.1007/s10544-006-0034-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-0034-z

Keywords

Navigation