Skip to main content
Log in

Isolation of cell nuclei in microchannels by short-term chemical treatment via two-step carrier medium exchange

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Separation/purification of nuclei from cells is a critical process required for medical and biochemical research applications. Here, we report a flow-through microfluidic device for isolating cell nuclei by selectively digesting the cell membrane by using the concept of hydrodynamic filtration (HDF). When a cell suspension is continuously introduced into a microchannel (main channel) possessing multiple side channels, cells flow through the main channel, whereas the carrier medium of the cells is drained through the side channels. Introductions of a cell treatment solution containing a surfactant and a washing buffer enable the two-step exchange of the carrier-medium and the cell treatment by the surfactant for a short span of time. The precise control of the treatment time by changing the flow rate and/or the size of the microchannel enables the selective digestion of cell membranes, resulting in the isolation of cell nuclei after separation from membrane debris and cytoplasmic components according to size. We examined several surfactant molecules and demonstrated that Triton X-100 exhibited high efficiency regarding nucleus isolation for both adherent (HeLa) and nonadherent (JM) cells, with a recovery ratio of ∼80 %. In addition, the isolation efficiency was evaluated by western blotting. The presented flow-through microfluidic cell-nucleus separator may be a useful tool for general biological applications, because of its simplicity in operation, high reproducibility, and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • A. Adamo, K.F. Jensen, Lab Chip 8(8), 1258–1261 (2008)

    Article  Google Scholar 

  • T.M. Antalis, D. Godbolt, Nucleic Acids Res. 19(15), 4301 (1991)

    Article  Google Scholar 

  • S.A. Beausoleil, M. Jedrychowski, D. Schwartz, J.E. Elias, J. Villén, J. Li, M.A. Cohn, L.C. Cantley, S.P. Gygi, Proc. Natl. Acad. Sci. USA 101(33), 12130–12135 (2004)

    Article  Google Scholar 

  • L. Brichese, N. Barboule, C. Heliez, A. Valette, Exp. Cell Res. 278(1), 101–111 (2002)

    Article  Google Scholar 

  • S. Choi, S. Song, C. Choi, J.-K. Park, Anal. Chem. 81(5), 1964–1968 (2009)

    Article  Google Scholar 

  • C.R. Cotter, J.A. Blaho, Methods Mol. Biol. 559(6), 371–387 (2009)

    Article  Google Scholar 

  • D.A. Dean, H. Kasamatsu, J. Biol. Chem. 269(7), 4910–4916 (1994)

    Google Scholar 

  • J.D. Dignam, R.M. Lebovitz, R.G. Roeder, Nucleic Acids Res. 11(5), 1475–1489 (1983)

    Article  Google Scholar 

  • J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442(7101), 403–411 (2006)

    Article  Google Scholar 

  • M.B. Fox, D.C. Esveld, A. Valero, R. Luttge, H.C. Mastwijk, P.V. Bartels, A. van den Berg, R.M. Boom, Anal. Bioanal. Chem. 385(3), 474–485 (2006)

    Article  Google Scholar 

  • S. Haeberle, R. Zengerle, Lab Chip 7(9), 1094–1110 (2007)

    Article  Google Scholar 

  • R. Hancock, Y. Hadj-Sahraoui, PLoS One 4(10), e7560 (2009)

    Article  Google Scholar 

  • K. Illmensee, P.C. Hoppe, Cell 23(1), 9–18 (1981)

    Article  Google Scholar 

  • H. Ishihara, K. Kuribayashi, S. Takeuchi, Proc. IEEE 22nd MEMS 367–370 (2009)

  • L.-S. Jang, M.-H. Wang, Biomed Microdev. 9(5), 737–743 (2007)

    Article  Google Scholar 

  • Y.-J. Kim, S. Noguchi, Y.K. Hayashi, T. Tsukahara, T. Shimizu, K. Arahata, Hum. Mol. Genet. 10(11), 1129–1139 (2001)

    Article  Google Scholar 

  • H.J. Lee, J.-H. Kim, H.K. Lim, E.C. Cho, N. Huh, C. Ko, J.C. Park, J.-W. Choi, S.S. Lee, Lab Chip 10(5), 626–633 (2010)

    Article  Google Scholar 

  • M. Lesort, K. Attanavanich, J. Zhang, G.V.W. Johnson, J. Biol. Chem. 273(20), 11991–11994 (1998)

    Article  Google Scholar 

  • Y.-C. Lin-Lee, L.V. Pham, A.T. Tamayo, L. Fu, H.-J. Zhou, L.C. Yoshimura, G.L. Decker, R.J. Ford, J. Biol. Chem. 281(27), 18878–18887 (2006)

    Article  Google Scholar 

  • R.C. Little, J. Colloid Interf. Sci. 65(3), 587–588 (1978)

    Article  MathSciNet  Google Scholar 

  • H. Lu, S. Gaudet, M.A. Schmidt, K.F. Jensen, Anal. Chem. 76(19), 5705–5712 (2004)

    Article  Google Scholar 

  • M. Macaluso, M. Montanari, C.M. Marshall, A.J. Gambone, G.M. Tosi, A. Giordano, M. Massaro-Giordano, Cell Death Differ. 13(9), 1515–1522 (2006)

    Article  Google Scholar 

  • J.S. Marcus, W.F. Anderson, S.R. Quake, Anal. Chem. 78(9), 3084–3089 (2006)

    Article  Google Scholar 

  • W.M. Rideout III, K. Hochedlinger, M. Kyba, G.Q. Daley, R. Jaenisch, Cell 109(1), 9–18 (2002)

    Article  Google Scholar 

  • A.C. Rowat, J. Lammerding, J.H. Ipsen, Biophys. J. 91(12), 4649–4664 (2006)

    Article  Google Scholar 

  • A.M. Skelley, O. Kirak, H. Suh, R. Jaenisch, J. Voldman, Nat. Methods 6(2), 147–152 (2009)

    Article  Google Scholar 

  • S. Sugaya, M. Yamada, M. Seki, Biomicrofluidics 5(2), 024103 (2011)

    Article  Google Scholar 

  • J.N. Umbreit, J.L. Strominger, Proc Natl. Acad. Sci. USA 70(10), 2997–3001 (1973)

    Article  Google Scholar 

  • N. Xia, T.P. Hunt, B.T. Mayers, E. Alsberg, G.M. Whitesides, R.M. Westervelt, D.E. Ingber, Biomed Microdev. 8(4), 299–308 (2006)

    Article  Google Scholar 

  • K. Xu, R.F. Ludueña, Cell Motil. Cytoskeleton 53(1), 39–52 (2002)

    Article  Google Scholar 

  • M. Yamada, M. Seki, Lab Chip 5(11), 1233–1239 (2005)

    Article  Google Scholar 

  • M. Yamada, K. Kano, Y. Tsuda, J. Kobayashi, M. Yamato, M. Seki, T. Okano, Biomed Microdev. 9(5), 637–645 (2007)

    Article  Google Scholar 

  • M. Yamada, J. Kobayashi, M. Yamato, M. Seki, T. Okano, Lab Chip 8(5), 772–778 (2008)

    Article  Google Scholar 

  • T.-S. Yeh, R.-H. Hsieh, S.-C. Shen, S.-H. Wang, M.-J. Tseng, C.-M. Shih, J.-J. Lin, Cancer Res. 64(22), 8334–8340 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-in-aid for Scientific Research A (20241031) and for Innovative Areas “Bio Assembler” (23106007) from Ministry of Education, Culture, Science, and Technology (MEXT), Japan, and for Improvement of Research Environment for Young Researchers from Japan Science and Technology Agency (JST). We thank Dr. Rie Utoh at Tokyo Women’s Medical University for technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masumi Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyama, K., Yamada, M. & Seki, M. Isolation of cell nuclei in microchannels by short-term chemical treatment via two-step carrier medium exchange. Biomed Microdevices 14, 751–757 (2012). https://doi.org/10.1007/s10544-012-9653-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9653-8

Keywords

Navigation