Skip to main content

Dielectrophoresis Field-Flow Fractionation for Continuous-Flow Separation of Particles and Cells in Microfluidic Devices

  • Chapter
  • First Online:
Advances in Transport Phenomena 2011

Part of the book series: Advances in Transport Phenomena ((ADVTRANS,volume 3))

Abstract

The ability of separating particles and cells in continuous flow is always desirable as it allows faster biomedical diagnosis. This chapter presents a review on the development of dielectrophoresis field-flow fractionation (DEP-FFF) technologies for continuous-flow separation of particles and cells in microfluidic devices. The review is mainly focused on the publications between 2005 and 2012. During separation processes, DEP-FFF transports particles and cells with hydrodynamic liquid flow in microchannels and fractionates particles and cells using dielectrophoresis (DEP) force generated perpendicular to the fluid flow direction. In the literature, numerous strategies have been developed to advance the way of generating nonuniform electric field which is required to produce DEP force, and four main strategies are grouped here, including (1) the use of planar electrodes, (2) the use of three-dimensional and sidewall electrodes, (3) the use of insulating topographical structures, and (4) the use of combined planar electrodes and insulating structures. DEP-FFF microfluidic devices can serve as a label-free, non-invasive and most efficient tool for manipulating and separating various biosamples such as particles, cells and DNA based on their polarizabilities in nonuniform electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toner, M., Irimia, D.: Blood on a chip. Annu. Rev. Biomed. Eng. 7, 77–103 (2005)

    Google Scholar 

  2. Cho, B.S., et al.: Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem. 75, 1671–1675 (2003)

    Google Scholar 

  3. Greenberg, A.E., Clesceri, L.S., Eaton, A.D.: Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association, American Water Works Association, and Water Environment Federation (2005)

    Google Scholar 

  4. Lenshof, A., Laurell, T.: Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39, 1203–1217 (2010)

    Google Scholar 

  5. Dainiak, M.B., et al.: Cell chromatography: Separation of different microbial cells using IMAC supermacroporous monolithic columns. Biotechnol. Prog. 21, 644–649 (2005)

    Google Scholar 

  6. Hulett, H.R., et al.: Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science 166, 747–749 (1969)

    Google Scholar 

  7. Yager, P., et al.: Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006)

    Google Scholar 

  8. Bonner, W.A., et al.: Fluorescence activated cell sorting. Rev. Sci. Instrum. 43, 404–409 (1972)

    Google Scholar 

  9. El-Ali, J., Sorger, P.K., Jensen, K.F.: Cells on chips. Nature 442, 403–411 (2006)

    Google Scholar 

  10. Bilitewski, U., et al.: Biochemical analysis with microfluidic systems. Anal. Bioanal. Chem. 377, 556–569 (2003)

    Google Scholar 

  11. Schimpf, M.E., Caldwell, K., Giddings, J.C.: Field-Flow Fractionation handbook. Principle and Theory. John Wiley & Sons, Inc., New York (2000)

    Google Scholar 

  12. Reschiglian, P., et al.: Field-flow fractionation and biotechnology. Trends Biotechnol. 23(9), 475–483 (2005)

    Google Scholar 

  13. Huang, Y., et al.: Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys. J. 73, 1118–1129 (1997)

    Google Scholar 

  14. Yang, J., et al.: Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal. Chem. 71, 911–918 (1999)

    Google Scholar 

  15. Wang, X.-B., et al.: Cell separation by dielectrophoretic field-flow fractionation. Acc. Chem. Res. 72, 832–839 (2000)

    Google Scholar 

  16. Song, H., et al.: Continuous-mode dielectrophoretic gating for highly efficient separation of analytes in surface micromachined microfluidic devices. J. Micromech. Microeng. 18, 125013 (2008)

    Google Scholar 

  17. Markx, G.H., Talary, M.S., Pethig, R.: Separation of viable and non-viable yeast using dielectrophoresis. J. Biotechnol. 32, 29–37 (1994)

    Google Scholar 

  18. Nedelcu, S., Watson, J.H.P.: Size separation of DNA molecules by pulsed electric field dielectrophoresis. J. Phys. D Appl. Phys. 37, 2197–2204 (2004)

    Google Scholar 

  19. Pohl, H.A.: The motion and participation of suspensoids in divergent electric fields. J. Appl. Phys. 22(7), 869–871 (1951)

    Google Scholar 

  20. Pohl, H.A.: Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  21. Jones, T.B.: Electromechanics of Particles. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  22. Lewpiriyawong, N.: Continuous Separation and Manipulation of Particles and Cells Using Dielectrophoresis. Nanyang Technological University, Singapore (2011)

    Google Scholar 

  23. Wang, X., Wang, X.-B., Gascoyne, P.R.C.: General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method. J. Electrostat. 39, 277–295 (1997)

    Google Scholar 

  24. Denner, V., Pohl, H.A.: Dielectrophoretic force in electrostatic fields. J. Electrostat. 13, 167–174 (1982)

    Google Scholar 

  25. Morgan, H., Green, N.G.: AC Electrokinetics: Colloids and Nanoparticles. Research Studies Press, Philadelphia (2002)

    Google Scholar 

  26. Arnold, W.M., Schwan, H.P., Zimmermann, U.: Surface conductance and other properties of latex particles measured by electrorotation. J. Phys. Chem. 91, 5093–5098 (1987)

    Google Scholar 

  27. Hawkins, B.G., et al.: Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields. Anal. Chem. 79, 7291–7300 (2007)

    Google Scholar 

  28. Wang, X.-B., et al.: A unified theory of dielectrophoresis and travelling wave dielectrophoresis. J. Phys. D Appl. Phys. 27, 1571–1574 (1994)

    Google Scholar 

  29. Nguyen, N.T., Wereley, S.: Fundamentals and Applications of Microfluidics, 2nd edn. Artech House, Boston (2006)

    MATH  Google Scholar 

  30. Wang, X.-B., et al.: Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation. Biophys. J. 74, 2689–2701 (1998)

    Google Scholar 

  31. Gascoyne, P., Satayavivad, J., Ruchirawat, M.: Microfluidic approaches to malaria detection. Acta Trop. 89, 357–369 (2004)

    Google Scholar 

  32. Markx, G.H., Pethig, R., Rousselet, J.: The dielectrophoretic levitation of latex beads with reference to field-flow fractionation. J. Phys. D Appl. Phys. 30, 2470–2477 (1997)

    Google Scholar 

  33. Markx, G.H., Rousselet, J., Pethig, R.: DEP-FFF: Field-flow fractionation using non-uniform electric field. J. Liq. Chromatogr. Relat. Technol. 20(16-17), 2857–2872 (1997)

    Google Scholar 

  34. Rousselet, J., Markx, G.H., Pethig, R.: Separation of erythrocytes and latex beads by dielectrophoretic levitation and hyperlayer field-flow fractionation. Colloids Surf., A 140, 209–216 (1998)

    Google Scholar 

  35. Holmes, D., Green, N.G., Morgan, H.: Microdevices for dielectrophoretic flow-through cell separation. IEEE Eng. Med. Biol. Mag. 22(6), 85–90 (2003)

    Google Scholar 

  36. Markx, G.H., Pethig, R.: Dielectrophoretic separation of cells: Continuous separation. Biotechnol. Bioeng. 45, 337–343 (1995)

    Google Scholar 

  37. Ino, K., et al.: Manipulation of microparticles for construction of array patterns by negative dielectrophoresis using multilayered array and grid electrodes. Biotechnol. Bioeng. 104(4), 709–718 (2009)

    MathSciNet  Google Scholar 

  38. Thomas, R.S.W., et al.: Trapping single human osteoblast-like cells from a heterogeneous population using a dielectrophoretic microfluidic device. Biomicrofluidics 4, 022806 (2010)

    Google Scholar 

  39. Jang, L.-S., Huang, P.-H., Lan, K.-C.: Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes. Biosens. Bioelectron. 24, 3637–3644 (2009)

    Google Scholar 

  40. Ramadan, Q., et al.: Simultaneous cell lysis and bead trapping in a continuous flow microfluidic device. Sens Actuators B 113, 944–955 (2006)

    Google Scholar 

  41. Auerswald, J., et al.: Fast immobilization of probe beads by dielectrophoresis-controlled adhesion in a versatile microfluidic platform for affinity assay. Electrophoresis 26, 3697–3705 (2005)

    Google Scholar 

  42. Lagally, E.T., Lee, S.-H., Soh, H.T.: Integrated microsystem for dielectrophoretic cell concentration and genetic detection. Lab Chip 5, 1053–1058 (2005)

    Google Scholar 

  43. Gascoyne, P.R.C.: Dielectrophoretic-field flow fractionation analysis of dielectric, density, and deformability characteristics of cells and particles. Anal. Chem. 81, 8878–8885 (2009)

    Google Scholar 

  44. Morgan, H., et al.: The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: Analytical solution using Fourier series. J. Phys. D Appl. Phys. 34, 1553–1561 (2001)

    Google Scholar 

  45. Durr, M., et al.: Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis 24, 722–731 (2003)

    Google Scholar 

  46. Moschallski, M., et al.: MicroPrep: Chip-based dielectrophoretic purification of mitochondria. Electrophoresis 31, 2655–2663 (2010)

    Google Scholar 

  47. Chen, D., Du, H.: A dielectrophoretic barrier-based microsystem for separation of microparticles. Microfluid. Nanofluid. 3, 603–610 (2007)

    Google Scholar 

  48. Chen, D.F., Du, H., Li, W.H.: A 3D paired microelectrode array for accumulation and separation of microparticles. J. Micromech. Microeng. 16, 1162–1169 (2006)

    Google Scholar 

  49. Choi, S., Park, J.-K.: Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip 5, 1161–1167 (2005)

    Google Scholar 

  50. Yang, F., et al.: Dielectrophoretic separation of colorectal cancer cells. Biomicrofluidics 4, 013204 (2010)

    Google Scholar 

  51. Khoshmanesh, K., et al.: Dielectrophoretic-activated cell sorter based on curved microelectrodes. Microfluid. Nanofluid. 9, 411–426 (2010)

    Google Scholar 

  52. Morgan, H., Holmes, D., Green, N.G.: 3D focusing of nanoparticles in microfluidic channels. IEE Proc.-Nanobiotechnol. 150(2), 76–81 (2003)

    Google Scholar 

  53. Ling, S.H., Lam, Y.C., Kua, C.H.: Particle streaming and separation using dielectrophoresis through discrete periodic microelectrode array. Microfluid. Nanofluid. 11(5), 579–591 (2011)

    Google Scholar 

  54. Park, J., et al.: An efficient cell separation system using 3D-asymmetric microelectrodes. Lab Chip 5, 1264–1270 (2005)

    Google Scholar 

  55. Liao, S.-H., Cheng, I.-F., Chang, H.-C.: Precisely sized separation of multiple particles based on the dielectrophoresis gradient in the z-direction. Microfluid. Nanofluid. 12, 201–211 (2011)

    Google Scholar 

  56. Yang, F., et al.: Cascade and staggered dielectrophoretic cell sorters. Electrophoresis 32, 2377–2384 (2011)

    Google Scholar 

  57. Han, K.-H., Han, S.-I., Frazier, A.B.: Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array. Lab Chip 9, 2958–2964 (2009)

    Google Scholar 

  58. Kim, U., et al.: Multitarget dielectrophoresis activated cell sorter. Anal. Chem. 80, 8656–8661 (2008)

    Google Scholar 

  59. Doh, I., Cho, Y.-H.: A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens. Actuators 121, 59–65 (2005)

    Google Scholar 

  60. Kralj, J.G., et al.: Continuous dielectrophoresis size-based particle sorting. Anal. Chem. 78, 5019–5025 (2006)

    Google Scholar 

  61. Kim, U., Soh, H.T.: Simultaneous sorting of multiple bacterial targets using integrated dielectrophoretic–magnetic activated cell sorter. Lab Chip 9, 2313–2318 (2009)

    Google Scholar 

  62. Pommer, M.S., et al.: Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis 29, 1213–1218 (2008)

    Google Scholar 

  63. Talary, M.S., et al.: Electromanipulation and separation of cells using travelling electric fields. J. Phys. D Appl. Phys. 29, 2198–2203 (1996)

    Google Scholar 

  64. Hughes, M.P., Pethig, R., Wang, X.-B.: Dielectrophoretic forces on particles in travelling electric fields. J. Phys. D Appl. Phys. 29, 474–482 (1996)

    Google Scholar 

  65. Huang, Y., et al.: Electrokinetic behavior of colloidal particles in travelling electric fields: Studies using yeast cells. J. Phys. D Appl. Phys. 26, 1528–1535 (1993)

    Google Scholar 

  66. Gascoyne, P., et al.: Microsample preparation by dielectrophoresis: Isolation of malaria. Lab Chip 2, 70–75 (2002)

    Google Scholar 

  67. Choi, E., Kim, B., Park, J.: High-throughput microparticle separation using gradient traveling wave dielectrophoresis. J. Micromech. Microeng. 19, 125014 (2009)

    Google Scholar 

  68. Morgan, H., et al.: Large-area travelling-wave dielectrophoresis particle separator. J. Micromech. Microeng. 7, 65–70 (1997)

    Google Scholar 

  69. Cui, L., Holmes, D., Morgan, H.: The dielectrophoretic levitation and separation of latex bead in microchips. Electrophoresis 22, 3893–3901 (2001)

    Google Scholar 

  70. Kawamoto, H.: Some techniques on electrostatic separation of particle size utilizing electrostatic traveling-wave field. J. Electrostat. 66, 220–228 (2008)

    Google Scholar 

  71. Huang, C., et al.: Design and fabrication of an automated microchip-based cell separation device. Anal. Lett. 40, 763–778 (2007)

    Google Scholar 

  72. Cheng, I.-F., et al.: A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis. Lab Chip 9, 3193–3201 (2009)

    Google Scholar 

  73. Huang, Y., et al.: Differences in the AC electrodynamics of viable and non-viable yeast cell determined through combined dielectrophoresis and electrorotation studies. Phys. Med. Biol. 37(7), 1499–1517 (1992)

    Google Scholar 

  74. Zhou, X.-F., et al.: Differentiation of viable and non-viable bacterial biofilms using electroortation. Biochim. Biophys. Acta 1245, 85–93 (1995)

    Google Scholar 

  75. Yang, J., et al.: Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. Biophys. J. 76, 3307–3314 (1999)

    Google Scholar 

  76. Arnold, W.M., Zimmermann, U.: Rotating-field-induced rotation and measurement of the membrane capacitance of single mesophyll cells of Avena sativa. Zeitschrift fuer Naturforschung. Section C. Biosci. 37, 908–915 (1982)

    Google Scholar 

  77. Cristofanilli, M., et al.: Automated electrorotation to reveal dielectric variations related to HER-2/neu overexpression in MCF-7 sublines1. Clin. Cancer Res. 8, 615–619 (2002)

    Google Scholar 

  78. Huang, Y., Wang, X., Becker, F.F., Gascoyne, P.R.: Membrane changes associated with the temperature-sensitive P85gag-mos-dependent transformation of rat kidney cells as determined by dielectrophoresis and electrorotation. Biochim. Biophys. Acta 1282(1), 76–84 (1996)

    Google Scholar 

  79. Pethig, R.J., Sanger, L.M., Heart, R.H., Corson, E., Smith, E.D., Peter, J.S.: Electrokinetic measurements of membrane capacitance and conductance for pancreatic β-cells. IEE Proc.-Nanobiotechnol. 152(6), 189–193 (2005)

    Google Scholar 

  80. Lei, U., Sun, P.-H., Pethig, R.: Refinement of the theory for extracting cell dielectric properties from dielectrophoresis and electrorotation experiments. Biomicrofluidics 5, 044109 (2011)

    Google Scholar 

  81. Schwan, H.P.: Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5, 147–209 (1957)

    Google Scholar 

  82. Fuhr, G., Hagedorn, R., Goring, H.: Separation of different cell types by rotating electric fields. Plant Cell Physiol. 26, 1527–1531 (1985)

    Google Scholar 

  83. Kua, C.H., et al.: Dynamic cell fractionation and transportation using moving dielectrophoresis. Anal. Chem. 79, 6975–6987 (2007)

    Google Scholar 

  84. Kua, C.H., et al.: Modeling of dielectrophoretic force for moving dielectrophoresis electrodes. J. Electrostat. 66, 514–525 (2008)

    Google Scholar 

  85. Kua, C.H., et al.: Cell motion model for moving dielectrophoresis. Anal. Chem. 80, 5454–5461 (2008)

    Google Scholar 

  86. Cui, H–.H., et al.: Separation of particles by pulsed dielectrophoresis. Lab Chip 9, 2306–2312 (2009)

    Google Scholar 

  87. Kumemura, M., et al.: Single-DNA-molecule trapping with silicon nanotweezers using pulsed dielectrophoresis. J. Micromech. Microeng. 21, 054020 (2011)

    Google Scholar 

  88. Chiou, P.Y., Ohta, A.T., Wu, M.C.: Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005)

    Google Scholar 

  89. Grier, D.G.: A revolution in optical manipulation. Nature 424, 810–816 (2003)

    Google Scholar 

  90. Garces-Chavez, V., Dholakia, K., Spalding, G.C.: Extended-area optically induced organization of microparticles on a surface. Appl. Phys. Lett. 85, 031106 (2005)

    Google Scholar 

  91. Lin, W.-Y., Lin, Y.-H., Lee, G.-B.: Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces. Microfluid. Nanofluid. 8, 217–229 (2010)

    Google Scholar 

  92. Lin, Y.-H., Lee, G.-B.: Optically induced flow cytometry for continuous microparticle counting and sorting. Biosens. Bioelectron. 24, 572–578 (2008)

    Google Scholar 

  93. Choi, W., et al.: Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image. Appl. Phys. Lett 93(14), 143901 (2008)

    Google Scholar 

  94. Cheng, I.-F., et al.: Stepwise gray-scale light-induced electric field gradient for passive and continuous separation of microparticles. Microfluid. Nanofluid. 12, 95–105 (2011)

    Google Scholar 

  95. Yang, S.-M., et al.: Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis. Opt. Lett. 35(12), 1959–1961 (2010)

    Google Scholar 

  96. Lu, Y.S., et al.: Controllability of non-contact cell manipulation by image dielectrophoresis. Opt. Quantum Electron. 37, 1385–1395 (2005)

    Google Scholar 

  97. Choi, W., et al.: Lab-on-a-display: A new microparticle manipulation platform using a liquid crystal display (LCD). Microfluid. Nanofluid. 3, 217–225 (2007)

    Google Scholar 

  98. Hwang, H., et al.: Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system. Electrophoresis 29, 1203–1212 (2008)

    Google Scholar 

  99. Hoeb, M., et al.: Light-induced dielectrophoretic manipulation of DNA. Biophys. J. 93, 1032–1038 (2007)

    Google Scholar 

  100. Lee, M.-W., Lin, Y.-H., Lee, G.-B.: Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces. Microfluid. Nanofluid. 8, 609–617 (2010)

    Google Scholar 

  101. Iliescu, C., et al.: Fabrication of a dielectrophoretic chip with 3D silicon electrodes. J. Micromech. Microeng. 15, 494–500 (2005)

    Google Scholar 

  102. Yu, L., et al.: Sequential field-flow cell separation method in a dielectrophoretic chip with 3D electrodes. J. Microelectromech. S. 16, 1120–1129 (2007)

    Google Scholar 

  103. Iliescu, C., et al.: Bidirectional field-flow particle separation method in a dielectrophoretic chip with 3D electrodes. Sens. Actuators B 129, 491–496 (2008)

    Google Scholar 

  104. Iliescu, C., Tresset, G., Xu, G.: Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes. Appl. Phys. Lett. 90, 234104 (2007)

    Google Scholar 

  105. Iliescu, C., Tresset, G., Xu, G.: Dielectrophoretic field-flow method for separating particle populations in a chip with asymmetric electrodes. Biomicrofluidics 3, 044104 (2009)

    Google Scholar 

  106. Tay, F.E.H., et al.: Electrical and thermal characterization of a dielectrophoretic chip with 3D electrodes for cells manipulation. Electrochim. Acta 52, 2862–2868 (2007)

    Google Scholar 

  107. Park, B.Y., Madou, M.J.: 3D electrode designs for flow-through dielectrophoretic system. Electrophoresis 26, 3745–3757 (2005)

    Google Scholar 

  108. Martinez-Duarte, R., Renaud, P., Madou, M.J.: A novel approach to dielectrophoresis using carbon electrodes. Electrophoresis 32, 2385–2392 (2011)

    Google Scholar 

  109. Ma, W., et al.: High-throughput dielectrophoretic manipulation of bioparticles within fluids through biocompatible three-dimensional microelectrode array. Electrophoresis 32, 494–505 (2011)

    Google Scholar 

  110. Wang, L., et al.: Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis 30, 782–791 (2009)

    Google Scholar 

  111. Wang, L., Flanagan, L., Lee, A.P.: Side-wall vertical electrodes for lateral field microfluidic applications. J. MEMS 16(2), 454–461 (2007)

    Google Scholar 

  112. Wang, L., et al.: Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab Chip 7, 1114–1120 (2007)

    Google Scholar 

  113. Zhang, Y.T., et al.: Titanium-based dielectrophoresis devices for microfluidic applications. Biomed. Microdevices 10, 509–517 (2008)

    Google Scholar 

  114. Kang, Y., et al.: Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochim. Acta 54, 1715–1720 (2009)

    Google Scholar 

  115. Lewpiriyawong, N., et al.: Microfluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis. Anal. Chem. 83, 9579–9585 (2011)

    Google Scholar 

  116. Xia, Y., Whitesides, G.M.: Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998)

    Google Scholar 

  117. Niu, X., et al.: Characterizing and patterning of PDMS-based conducting composites. Adv. Mater. 19, 2682–2686 (2007)

    Google Scholar 

  118. Cetin, B., et al.: Continuous particle separation by size via AC-dielectrophoresis using a lab-on-a-chip device with 3-D electrodes. Electrophoresis 30, 766–772 (2009)

    Google Scholar 

  119. Lewpiriyawong, N., Yang, C., Lam, Y.C.: Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Electrophoresis 31, 2622–2631 (2010)

    Google Scholar 

  120. Lewpiriyawong, N., Yang, C.: AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes. Biomicrofluidics 6, 012807 (2012)

    Google Scholar 

  121. Lapizco-Encinas, B.H., et al.: Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis 25, 1695–1704 (2004)

    Google Scholar 

  122. Cummings, E.B., Singh, A.K.: Dielectrophoresis in microchips containing arrays of insulating posts: Theoretical and experiment results. Anal. Chem. 75, 4724–4731 (2003)

    Google Scholar 

  123. Shafiee, H., et al.: Contactless dielectrophoresis: a new technique for cell manipulation. Biomed. Microdevices 11, 997–1006 (2009)

    Google Scholar 

  124. Kang, Y., et al.: DC-Dielectrophoretic separation of biological cells by size. Biomed. Microdevices 10, 243–249 (2008)

    Google Scholar 

  125. Lewpiriyawong, N., Yang, C., Lam, Y.C.: Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks. Biomicrofluidics 2, 034105 (2008)

    Google Scholar 

  126. Lewpiriyawong, N., Yang, C., Lam, Y.C.: Electrokinetically driven concentration of particles and cells by dielectrophoresis with DC-offset AC electric field. Microfluid. Nanofluid. 12, 723–733 (2011)

    Google Scholar 

  127. Church, C., et al.: Electrokinetic focusing and filtration of cells in a serpentine microchannel. Biomicrofluidics 3, 044109 (2009)

    Google Scholar 

  128. Chen, D., Du, H.: A microfluidic device for rapid concentration of particles in continuous flow by DC dielectrophoresis. Microfluid. Nanofluid. 9, 281–291 (2010)

    MathSciNet  Google Scholar 

  129. Chou, C.F., et al.: Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys. J. 83, 2170–2179 (2002)

    Google Scholar 

  130. Lapizco-Encinas, B.H., Ozuna-Chacon, S., Marco, R.-P.: Protein manipulation with insulator-based dielectrophoresis and DC electric fields. J. Chromatogr. A 1206, 45–51 (2008)

    Google Scholar 

  131. Jones, P.V., Staton, S.J.R., Hayes, M.A.: Blood cell capture in a sawtooth dielectrophoretic microchannel. Anal. Bioanal. Chem. 401, 2103–2111 (2011)

    Google Scholar 

  132. Barrett, L.M., et al.: Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels. Anal. Chem. 77, 6798–6804 (2005)

    Google Scholar 

  133. Barbulovic-Nad, I., et al.: DC-dielectrophoretic separation of microparticles using an oil droplet obstacle. Lab Chip 6, 274–279 (2006)

    Google Scholar 

  134. Kang, K.H., et al.: Continuous separation of microparticles by size with direct current-dielectrophoresis. Electrophoresis 27, 694–702 (2006)

    Google Scholar 

  135. Zhu, J., et al.: DC dielectrophoretic focusing of particles in a serpentine microchannel. Microfluid. Nanofluid. 7(6), 751–756 (2009)

    Google Scholar 

  136. Sabounchi, P., et al.: Sample concentration and impedance detection on a microfluidic polymer chip. Biomed. Microdevices 10(5), 661–670 (2008)

    Google Scholar 

  137. Rosenthal, A., Voldman, J.: Dielectrophoretic traps for single-particle patterning. Biophys. J. 88, 2193–2205 (2005)

    Google Scholar 

  138. Zhu, J., Xuan, X.: Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC electric fields. Electrophoresis 30, 2668–2675 (2009)

    Google Scholar 

  139. Hawkins, B.G., Kirby, B.J.: Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems. Electrophoresis 31, 3622–3633 (2011)

    Google Scholar 

  140. Sridharan, S., et al.: Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis. Electrophoresis 32, 2274–2281 (2011)

    Google Scholar 

  141. Krishnan, R., et al.: Alternating current electrokinetic separation and detection of DNA nanoparticles in high-conductance solutions. Electrophoresis 29, 1765–1774 (2008)

    Google Scholar 

  142. Demierre, N., et al.: Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sens. Actuators B 132, 388–396 (2008)

    Google Scholar 

  143. Shafiee, H., et al.: Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10, 438–445 (2009)

    Google Scholar 

  144. Braschler, T., et al.: Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies. Lab Chip 8, 280–286 (2008)

    Google Scholar 

  145. Tornay, R., et al.: Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles. Lab Chip 8, 267–273 (2008)

    Google Scholar 

  146. Valero, A., et al.: A miniaturized continuous dielectrophoretic cell sorter and its applications. Biomicrofluidics 4, 022807 (2010)

    Google Scholar 

  147. Nascimento, E.M., et al.: Dielectrophoretic sorting on a microfabricated flow cytometer: Label free separation of Babesia bovis infected erythrocytes. Bioelectrochemistry 73, 123–128 (2008)

    Google Scholar 

  148. Piacentini, N., et al.: Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5, 034122 (2011)

    MathSciNet  Google Scholar 

  149. Demierre, N., et al.: Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip 7, 355–365 (2006)

    Google Scholar 

  150. Henslee, E.A., et al.: Selective concentration of human cancer cells using contactless dielectrophoresis. Electrophoresis 32, 2523–2529 (2011)

    Google Scholar 

  151. Cui, H.-H., Lim, K.-M.: Pillar array microtraps with negative dielectrophoresis. Langmuir 25, 3336–3339 (2009)

    Google Scholar 

  152. Jen, C.-P., Chen, W.-F.: An insulator-based dielectrophoretic microdevice for the simultaneous filtration and focusing of biological cells. Biomicrofluidics 5, 044105 (2011)

    Google Scholar 

  153. Pethig, R.: Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 4, 022811 (2010)

    Google Scholar 

  154. Voldman, J.: Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng. 8, 425–454 (2006)

    Google Scholar 

  155. Lee, D.-H., et al.: Dielectrophoretic particle–particle interaction under AC electrohydrodynamic flow conditions. Electrophoresis 32, 2298–2306 (2011)

    Google Scholar 

  156. Yang, H., et al.: Low-energy electron-beam lithography of ZEP-520 positive resist. In: 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (2006)

    Google Scholar 

  157. Cumming, D.R.S., et al.: Fabrication of 3 nm wires using 100 keV electron beam lithography and poly(methyl methacrylate) resist. Appl. Phys. Lett. 68(3), 322 (1996)

    Google Scholar 

  158. Muller, T., et al.: A 3D microelectrode system for handling and caging single cells and particles. Biosens. Bioelectron. 14, 247–256 (1999)

    Google Scholar 

  159. Green, N.G., Morgan, H.: Dielectrophoretic investigations of sub-micrometre latex spheres. J. Phys. D Appl. Phys. 30, 2626–2633 (1997)

    Google Scholar 

  160. Holmes, D., et al.: On-chip high-speed sorting of micron-sized particles for high-throughput analysis. IEE Proc. Nanobiotech. 152(4), 129–135 (2005)

    Google Scholar 

  161. Koo, O.K., et al.: Targeted capture of pathogenic bacteria using a mammalian cell receptor coupled with dielectrophoresis on a biochip. Anal. Chem. 81, 3094–3101 (2009)

    Google Scholar 

  162. Goater, A.D., Burt, J.P.H., Pethig, R.: A combined travelling wave dielectrophoresis and electrorotation device: Applied to the concentration and viability determination of Cryptosporidium. J. Phys. D Appl. Phys. 30, 65–69 (1997)

    Google Scholar 

  163. Bridlea, H., et al.: Detection of cryptosporidium in miniaturised fluidic devices. Water Res. 46, 1641–1661 (2012)

    Google Scholar 

  164. Varshney, M., et al.: A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sens. Actuator B 128, 99–107 (2007)

    Google Scholar 

  165. Kim, S., et al.: A microwire sensor for rapid detection of Escherichia coli K-12 in fresh produce. Innov. Food Sci. Emerg. 12, 617–622 (2011)

    Google Scholar 

  166. Yagupsky, P., Nolte, F.: Quantitative aspects of septicemia. Clin. Microbiol. Rev. 3, 269–279 (1990)

    Google Scholar 

  167. Sengupta, S., Gordon, J.E., Chang, H.-C.: Microfluidic diagnostic systems for the rapid detection and quantification of pathogens. In: Tien, W.-C., Finehout, E. (eds.) Microfluidics for Biological Applications, pp. 274–276. Springer, Berlin (2008)

    Google Scholar 

  168. Yang, L., Bashir, R.: Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol. Adv. 26, 135–150 (2008)

    Google Scholar 

  169. Guan, X., et al.: Rapid detection of pathogens using antibody-coated microbeads with bioluminescence in microfluidic chips. Biomed. Microdevices 12, 683–691 (2010)

    Google Scholar 

  170. Yang, L.: Dielectrophoresis assisted immuno-capture and detection of foodborne pathogenic bacteria in biochips. Talanta 80, 551–558 (2009)

    Google Scholar 

  171. Pratt, E.D., et al.: Rare cell capture in microfluidicdevices. Chem. Eng. Sci. 66, 1508–1522 (2011)

    Google Scholar 

Download references

Acknowledgments

The authors would acknowledge the research grant (AcRF RG17/05) from the Ministry of Education of Singapore to CY and the Ph.D. Scholarship from Nanyang Technological University to NL. The authors also are grateful to Dr. Marcos for his comments and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lewpiriyawong, N., Yang, C. (2014). Dielectrophoresis Field-Flow Fractionation for Continuous-Flow Separation of Particles and Cells in Microfluidic Devices. In: Wang, L. (eds) Advances in Transport Phenomena 2011. Advances in Transport Phenomena, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-01793-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01793-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01792-1

  • Online ISBN: 978-3-319-01793-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics