Skip to main content
Log in

Combined microfluidic-micromagnetic separation of living cells in continuous flow

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper describes a miniaturized, integrated, microfluidic device that can pull molecules and living cells bound to magnetic particles from one laminar flow path to another by applying a local magnetic field gradient, and thus selectively remove them from flowing biological fluids without any wash steps. To accomplish this, a microfabricated high-gradient magnetic field concentrator (HGMC) was integrated at one side of a microfluidic channel with two inlets and outlets. When magnetic micro- or nano-particles were introduced into one flow path, they remained limited to that flow stream. In contrast, when the HGMC was magnetized, the magnetic beads were efficiently pulled from the initial flow path into the collection stream, thereby cleansing the original fluid. Using this microdevice, living E. coli bacteria bound to magnetic nanoparticles were efficiently removed from flowing solutions containing densities of red blood cells similar to that found in blood. Because this microdevice allows large numbers of beads and cells to be sorted simultaneously, has no capacity limit, and does not lose separation efficiency as particles are removed, it may be especially useful for separations from blood or other clinical samples. This on-chip HGMC-microfluidic separator technology may potentially allow cell separations to be carried out in the field outside of hospitals and clinical laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C.H. Ahn, M.G. Allen, W. Trimmer, Y.N. Jun, and S. Erramilli, J. Microelectromech. S 5, 151 (1996).

    Article  Google Scholar 

  • M. Berger, J. Castelino, R. Huang, M. Shah, and R.H. Austin, Electrophoresis 22, 3883 (2001).

    Article  Google Scholar 

  • G. Blankenstein, in Microfabricated Flow System for Magnetic Cell and Particle Separation, edited by U. Hafeli, W. Schutt, J. Teller, and M. Zborowski (Plenum Press, New York, 1997), p. 233.

  • J.J. Chalmers, M. Zborowski, L.P. Sun, and L. Moore, Biotechnol. Progr. 14, 141 (1998).

    Article  Google Scholar 

  • B.S. Cho, T.G. Schuster, X. Zhu, D. Chang, G.D. Smith, and S. Takayama, Anal. Chem. 75, 1671 (2003).

    Article  Google Scholar 

  • T. Deng, M. Prentiss, and G.M. Whitesides, Appl. Phys. Lett. 80, 461 (2002).

    Article  Google Scholar 

  • S. Fiedler, S.G. Shirley, T. Schnelle, and G. Fuhr, Anal. Chem. 70, 1909 (1998).

    Article  Google Scholar 

  • M. Franzreb, M. Siemann-Herzberg, T.J. Hobley, and O.R. Thomas, Appl. Microbiol. Biotechnol. (2006).

  • A.Y. Fu, C. Spence, A. Scherer, F.H. Arnold, and S.R. Quake, Nat. Biotechnol. 17, 1109 (1999).

    Article  Google Scholar 

  • C.B. Fuh, and S.Y. Chen, J. Chromatogr. A 813, 313 (1998).

    Article  Google Scholar 

  • A.K. Gupta and S. Wells, IEEE Trans. Nanobiosci. 3, 66 (2004).

    Article  MATH  Google Scholar 

  • K.H. Han and A.B. Frazier, J. Appl. Phys. 96, 5797 (2004).

    Article  Google Scholar 

  • K.H. Han and A.B. Frazier, Lab on a Chip 6, 265 (2006).

    Article  Google Scholar 

  • R. Handgretinger, P. Lang, M. Schumm, G. Taylor, S. Neu, E. Koscielnak, D. Niethammer, and T. Klingebiel, Bone Marrow Transpl. 21, 987 (1998).

    Article  Google Scholar 

  • R. Hartig, M. Hausmann, G. Luers, M. Kraus, G. Weber, and C. Cremer, Rev. Sci. Ins. Trum. 66, 3289 (1995).

    Article  Google Scholar 

  • B.L. Hirschbein, D.W. Brown, and G.M. Whitesides, Chemtech 12, 172 (1982).

    Google Scholar 

  • L.R. Huang, E.C. Cox, R.H. Austin, and J.C. Sturm, Science 304, 987 (2004).

    Article  Google Scholar 

  • T.P. Hunt, H. Lee, and R.M. Westervelt, Appl. Phys. Lett. 85, 6421 (2004).

    Article  Google Scholar 

  • D.W. Inglis, R. Riehn, R.H. Austin, and J.C. Sturm, Appl. Phys. Lett. 85, 5093 (2004).

    Article  Google Scholar 

  • K.S. Kim, and J.K. Park, Lab on a Chip 5, 657 (2005).

    Article  Google Scholar 

  • H. Lee, A.M. Purdon, and R.M. Westervelt, Appl. Phys. Lett. 85, 1063 (2004).

    Article  Google Scholar 

  • H. Lu, S. Gaudet, M.A. Schmidt, and K.F. Jensen, Anal. Chem. 76, 5705 (2004).

    Article  Google Scholar 

  • J.C. McDonald and G.M. Whitesides, Accounts Chem. Res. 35, 491 (2002).

    Article  Google Scholar 

  • D. Melville, F. Paul, and S. Roath, Nature 255, 706 (1975a).

    Article  Google Scholar 

  • D. Melville, F. Paul, and S. Roath, IEEE Transactions on Magnetics 11, 1701 (1975b).

    Article  Google Scholar 

  • N. Pamme, Lab on a Chip 6, 24 (2006).

    Article  Google Scholar 

  • N. Pamme and A. Manz, Anal. Chem. 76, 7250 (2004).

    Article  Google Scholar 

  • F.E. Rasmussen, J.T. Ravnkilde, P.T. Tang, O. Hansen, and S. Bouwstra, Sensor Actuat. A-Phys. 92, 242 (2001).

    Article  Google Scholar 

  • I. Safarik and M. Safarikova, J Chromatogr B 722, 33 (1999).

    Google Scholar 

  • C.H. Setchell, J. Chem. Tech. Biot. B 35, 175 (1985).

    Article  Google Scholar 

  • K. Smistrup, B.G. Kjeldsen, J.L. Reimers, M. Dufva, J. Petersen, and M.F. Hansen, Lab on a Chip 5, 1315 (2005).

    Article  Google Scholar 

  • K. Takamura, K. Hayashi, N. Ishinishi, T. Yamada, and Y. Sugioka, J. Biomed. Mater. Res. 28, 583 (1994).

    Article  Google Scholar 

  • M. Takayasu, N. Duske, S.R. Ash, and F.J. Friedlaender, IEEE Trans. Magnetics 18, 1520 (1982).

    Article  Google Scholar 

  • M. Takayasu, D.R. Kelland, and J.V. Minervini, IEEE Trans. Appl. Supercond. 10, 927 (2000).

    Article  Google Scholar 

  • A.G.J. Tibbe, B.G. de Grooth, J. Greve, G.J. Dolan, C. Rao, and L. Terstappen, Cytometry 47, 163 (2002).

    Article  Google Scholar 

  • M. Uo, F. Watari, A. Yokoyama, H. Matsuno, and T. Kawasaki, Biomaterials 20, 747 (1999).

    Article  Google Scholar 

  • M.M. Wang, E. Tu, D.E. Raymond, J.M. Yang, H. Zhang, N. Hagen, B. Dees, E.M. Mercer, A.H. Forster, I. Kariv, P.J. Marchand, and W.F. Butler, Nat. Biotechnol. 23, 83 (2005).

    Article  Google Scholar 

  • J.C. Wataha, N.L. O’Dell, B.B. Singh, M. Ghazi, G.M. Whitford, and P.E. Lockwood, J. Biomed. Mater. Res. 58, 537 (2001).

    Article  Google Scholar 

  • S. Wolf and R.N. Tauber, Silicon Processing for the VLSI Era, Vol. 1. Process Technology (Lattice Press, 1986).

  • M. Yamada, M. Nakashima, and M. Seki, Anal. Chem. 76, 5465 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Ingber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, N., Hunt, T.P., Mayers, B.T. et al. Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevices 8, 299–308 (2006). https://doi.org/10.1007/s10544-006-0033-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-0033-0

Keywords

Navigation