Skip to main content
Log in

Particle/cell separation on microfluidic platforms based on centrifugation effect: a review

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Particle/cell separation in heterogeneous mixtures including biological samples is a standard sample preparation step for various biomedical assays. A wide range of microfluidic-based methods have been proposed for particle/cell sorting and isolation. Two promising microfluidic platforms for this task are microfluidic chips and centrifugal microfluidic disks. In this review, we focus on particle/cell isolation methods that are based on liquid centrifugation phenomena. Under this category, we reviewed particle/cell sorting methods which have been performed on centrifugal microfluidic platforms, and inertial microfluidic platforms that contain spiral channels and multi-orifice channels. All of these platforms implement a form of centrifuge-based particle/cell separation: either physical platform centrifugation in the case of centrifugal microfluidic platforms or liquid centrifugation due to Dean drag force in the case of inertial microfluidics. Centrifugal microfluidic platforms are suitable for cases where the preparation step of a raw sample is required to be integrated on the same platform. However, the limited available space on the platform is the main disadvantage, especially when high sample volume is required. On the other hand, inertial microfluidics (spiral and multi-orifice) showed various advantages such as simple design and fabrication, the ability to process large sample volume, high throughput, high recovery rate, and the ability for multiplexing for improved performance. However, the utilization of syringe pump can reduce the portability options of the platform. In conclusion, the requirement of each application should be carefully considered prior to platform selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Spiral figure is adopted from Warkiani et al. (2015a) under a Creative Commons Attribution 4.0 International License, and multi-orifice figure is adopted from Lee et al. (2009a) with permission from AIP Publishing LLC

Fig. 2
Fig. 3

ac is adopted from Kim et al. (2013) with permission from Elsevier, and df Is adopted from Kinahan et al. (2014b) with permission from Elsevier

Fig. 4
Fig. 5

a is adopted from Lee et al. (2014) with permission from American Chemical Society, b Glynn et al. (2015) under a Creative Commons Attribution 4.0 International License

Fig. 6

a is adopted from Park et al. (2014) with permission from American Chemical Society, b is adopted from Burger et al. (2012b) with permission from Royal Society of Chemistry, c is adopted from Aguirre et al. (2015) with permission from Springer

Fig. 7

a is adopted from Martinez-Duarte et al. (2010) with permission from Royal Society of Chemistry, b is adopted from Kirby et al. (2012) with permission from Springer

Fig. 8
Fig. 9

a and b is adopted from Zhang et al. (2016) with permission from Royal Society of Chemistry

Fig. 10

a Is adopted from Shelby and Chiu (2004) with permission Royal Society of Chemistry, b is adopted from Lee et al. (2009a) with permission from AIP Publishing LLC, c is adopted from Park et al. (2009) with permission from Royal Society of Chemistry

Similar content being viewed by others

References

  • Aguirre GR, Efremov V, Kitsara M, Ducrée J (2015) Integrated micromixer for incubation and separation of cancer cells on a centrifugal platform using inertial and dean forces. Microfluid Nanofluid 18(3):513–526

    Article  Google Scholar 

  • Amasia M, Madou M (2010) Large-volume centrifugal microfluidic device for blood plasma separation. Bioanalysis 2(10):1701–1710

    Article  Google Scholar 

  • Arosio P, Müller T, Mahadevan L, Knowles TP (2014) Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles. Nano Lett 14(5):2365–2371

    Article  Google Scholar 

  • Ashworth T (1869) A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 14(3):146–149

    Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8(11):1906–1914

    Article  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Kaval N, Seliskar CJ, Papautsky I (2010) Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed Microdevice 12(2):187–195

    Article  Google Scholar 

  • Boycott A (1920) Sedimentation of blood corpuscles. Nature 104:532

    Article  Google Scholar 

  • Brenner T, Glatzel T, Zengerle R, Ducree J (2005) Frequency-dependent transversal flow control in centrifugal microfluidics. Lab Chip 5(2):146–150. doi:10.1039/b406699e

    Article  Google Scholar 

  • Burger R, Ducrée J (2012) Handling and analysis of cells and bioparticles on centrifugal microfluidic platforms. Expert Rev Mol Diagn 12(4):407–421. doi:10.1586/erm.12.28

    Article  Google Scholar 

  • Burger R, Kijanka G, Sheils O, O’Leary J, Ducrée J (2011) Arrayed capture, assaying and binary counting of cells in a stopped-flow sedimentation mode. In: 15th International conference on miniaturized systems for chemistry and life sciences (uTAS). Seattle, pp 2–6

  • Burger R, Kirby D, Glynn M, Nwankire C, O’Sullivan M, Siegrist J, Kinahan D, Aguirre G, Kijanka G, Gorkin RA (2012a) Centrifugal microfluidics for cell analysis. Curr Opin Chem Biol 16(3):409–414

    Article  Google Scholar 

  • Burger R, Reith P, Kijanka G, Akujobi V, Abgrall P, Ducrée J (2012b) Array-based capture, distribution, counting and multiplexed assaying of beads on a centrifugal microfluidic platform. Lab Chip 12(7):1289–1295

    Article  Google Scholar 

  • Che J, Mach AJ, Go DE, Talati I, Ying Y, Rao J, Kulkarni RP, Di Carlo D (2013) Microfluidic purification and concentration of malignant pleural effusions for improved molecular and cytomorphological diagnostics. PLoS ONE 8(10):e78194

    Article  Google Scholar 

  • Chiu DT (2007) Cellular manipulations in microvortices. Anal Bioanal Chem 387(1):17–20

    Article  Google Scholar 

  • Dean W (1928) Fluid motion in a curved channel. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, vol 787. The Royal Society, pp 402–420

  • Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046

    Article  Google Scholar 

  • Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104(48):18892–18897

    Article  Google Scholar 

  • Ducrée J, Haeberle S, Lutz S, Pausch S, Von Stetten F, Zengerle R (2007) The centrifugal microfluidic Bio-Disk platform. J Micromech Microeng 17(7):S103–S115

    Article  Google Scholar 

  • Furutani S, Nagai H, Takamura Y, Kubo I (2010) Compact disk (CD)-shaped device for single cell isolation and PCR of a specific gene in the isolated cell. Anal Bioanal Chem 398(7–8):2997–3004

    Article  Google Scholar 

  • Glynn M, Nwankire C, Lemass K, Kinahan DJ, Ducrée J (2015) Cluster size distribution of cancer cells in blood using stopped-flow centrifugation along scale-matched gaps of a radially inclined rail. Microsyst Nanoeng 1. doi:10.1038/micronano.2015.18

  • Guan G, Wu L, Bhagat AA, Li Z, Chen PC, Chao S, Ong CJ, Han J (2013) Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation. Scientific reports 3

  • Haeberle S, Brenner T, Zengerle R, Ducrée J (2006) Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip 6(6):776–781

    Article  Google Scholar 

  • Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DS-W, Lim WT, Han J, Bhagat AAS, Lim CT (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Scientific reports 3

  • Hou HW, Bhattacharyya RP, Hung DT, Han J (2015) Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics. Lab Chip 15(10):2297–2307

    Article  Google Scholar 

  • Hyun K-A, Jung H-I (2014) Advances and critical concerns with the microfluidic enrichments of circulating tumor cells. Lab Chip 14(1):45–56

    Article  Google Scholar 

  • Jiang M, Mazzeo AD, Drazer G (2015) Centrifugal deterministic lateral displacement separation system. arXiv preprint arXiv:150706027

  • Karnis A, Goldsmith H, Mason S (1966) The flow of suspensions through tubes: v. Inertial effects. Can J Chem Eng 44(4):181–193

    Article  Google Scholar 

  • Khoo BL, Warkiani ME, Tan DS, Bhagat AA, Irwin D, Lau DP, Lim AS, Lim KH, Krisna SS, Lim WT, Yap YS, Lee SC, Soo RA, Han J, Lim CT (2014) Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells. PLoS One 9(7):e99409. doi:10.1371/journal.pone.0099409

    Article  Google Scholar 

  • Kim J, Kido H, Rangel RH, Madou MJ (2008) Passive flow switching valves on a centrifugal microfluidic platform. Sens Actuators B Chem 128(2):613–621. doi:10.1016/j.snb.2007.07.079

    Article  Google Scholar 

  • Kim T-H, Hwang H, Gorkin R, Madou M, Cho Y-K (2013) Geometry effects on blood separation rate on a rotating disc. Sens Actuators B Chem 178:648–655

    Article  Google Scholar 

  • Kinahan D, Kilcawley N, Glynn M, Kirby D, Ducree J (2014a) Isolation of white blood cells using paper-triggered dissolvable-film valves on a centrifugal platform. In: 18th International conference on miniaturized systems for chemistry and life sciences (uTAS). Texas, pp 1425–1427

  • Kinahan DJ, Kearney SM, Glynn MT, Ducrée J (2014b) Spira mirabilis enhanced whole blood processing in a lab-on-a-disk. Sens Actuators, A 215:71–76

    Article  Google Scholar 

  • Kirby D, Siegrist J, Kijanka G, Zavattoni L, Sheils O, O’Leary J, Burger R, Ducrée J (2012) Centrifugo-magnetophoretic particle separation. Microfluid Nanofluid 13(6):899–908

    Article  Google Scholar 

  • Kirby D, Glynn M, Kijanka G, Ducrée J (2015) Rapid and cost-efficient enumeration of rare cancer cells from whole blood by low-loss centrifugo-magnetophoretic purification under stopped-flow conditions. Cytom Part A 87(1):74–80

    Article  Google Scholar 

  • Kubo I, Furutani S, Nagai H (2009) The activity determination of single cell by isolation and cultivation on a centrifugal flow disk. ECS Trans 16(17):1–8

    Article  Google Scholar 

  • Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9(20):2973–2980

    Article  Google Scholar 

  • Kuo J-N, Chen X-F (2015) Plasma separation and preparation on centrifugal microfluidic disk for blood assays. Microsyst Technol 21(11):2485–2494

    Article  Google Scholar 

  • Kuo J-N, Li B-S (2014) Lab-on-CD microfluidic platform for rapid separation and mixing of plasma from whole blood. Biomed Microdevice 16(4):549–558

    Article  MathSciNet  Google Scholar 

  • Lee MG, Choi S, Park J-K (2009a) Rapid laminating mixer using a contraction-expansion array microchannel. Appl Phys Lett 95(5):051902

    Article  Google Scholar 

  • Lee MG, Choi S, Park J-K (2009b) Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lab Chip 9(21):3155–3160

    Article  Google Scholar 

  • Lee BS, Lee YU, Kim H-S, Kim T-H, Park J, Lee J-G, Kim J, Kim H, Lee WG, Cho Y-K (2011a) Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood. Lab Chip 11(1):70–78

    Article  Google Scholar 

  • Lee MG, Choi S, Kim H-J, Lim HK, Kim J-H, Huh N, Park J-K (2011b) Inertial blood plasma separation in a contraction–expansion array microchannel. Appl Phys Lett 98(25):253702

    Article  Google Scholar 

  • Lee MG, Choi S, Park J-K (2011c) Inertial separation in a contraction–expansion array microchannel. J Chromatogr A 1218(27):4138–4143

    Article  Google Scholar 

  • Lee MG, Shin JH, Bae CY, Choi S, Park J-K (2013) Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress. Anal Chem 85(13):6213–6218

    Article  Google Scholar 

  • Lee A, Park J, Lim M, Sunkara V, Kim SY, Kim GH, Kim M-H, Cho Y-K (2014) All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity. Anal Chem 86(22):11349–11356

    Article  Google Scholar 

  • Li T, Zhang L, Leung KM, Yang J (2010) Out-of-plane microvalves for whole blood separation on lab-on-a-CD. J Micromech Microeng 20(10):105024

    Article  Google Scholar 

  • Mach AJ, Kim JH, Arshi A, Hur SC, Di Carlo D (2011) Automated cellular sample preparation using a centrifuge-on-a-chip. Lab Chip 11(17):2827–2834

    Article  Google Scholar 

  • Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628

    Article  Google Scholar 

  • Martinez-Duarte R, Gorkin RA III, Abi-Samra K, Madou MJ (2010) The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip 10(8):1030–1043

    Article  Google Scholar 

  • Moen ST, Hatcher CL, Singh AK (2016) A centrifugal microfluidic platform that separates whole blood samples into multiple removable fractions due to several discrete but continuous density gradient sections. PLoS ONE 11(4):e0153137

    Article  Google Scholar 

  • Moon H-S, Kwon K, Kim S-I, Han H, Sohn J, Lee S, Jung H-I (2011) Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11(6):1118–1125

    Article  Google Scholar 

  • Morijiri T, Yamada M, Hikida T, Seki M (2013) Microfluidic counterflow centrifugal elutriation system for sedimentation-based cell separation. Microfluid Nanofluid 14(6):1049–1057

    Article  Google Scholar 

  • Nwankire CE, Maguire I, Kernan D, Glynn M, Kirby D, Ducree J (2015a) SIZE-and deformability-based particle sorting by strategic design of obstacle arrays in continuous centrifugal sedimentation mode. In: Transducers-2015 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS). IEEE, pp 1854–1856

  • Nwankire CE, Venkatanarayanan A, Glennon T, Keyes TE, Forster RJ, Ducrée J (2015b) Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Biosens Bioelectron 68:382–389

    Article  Google Scholar 

  • Park J-S, Jung H-I (2009) Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Anal Chem 81(20):8280–8288

    Article  Google Scholar 

  • Park J-M, Kim B-C, Lee J-G, Ko C (2008) One-step white blood cell separation from whole blood on centrifugal microfluidic. Paper presented at the NSTI-nanotech Boston, 1–5 June 2008

  • Park J-S, Song S-H, Jung H-I (2009) Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab Chip 9(7):939–948

    Article  Google Scholar 

  • Park J-M, Kim MS, Moon H-S, Yoo CE, Park D, Kim YJ, Han K-Y, Lee J-Y, Oh JH, Kim SS (2014) Fully automated circulating tumor cell isolation platform with large-volume capacity based on lab-on-a-disc. Anal Chem 86(8):3735–3742

    Article  Google Scholar 

  • Riegger L, Grumann M, Steigert J, Lutz S, Steinert C, Mueller C, Viertel J, Prucker O, Rühe J, Zengerle R (2007) Single-step centrifugal hematocrit determination on a 10-$ processing device. Biomed Microdevice 9(6):795–799

    Article  Google Scholar 

  • Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17(1):1–52

    Article  Google Scholar 

  • Schaap A, Dumon J, Den Toonder J (2016) Sorting algal cells by morphology in spiral microchannels using inertial microfluidics. Microfluid Nanofluid 20(9):125

    Article  Google Scholar 

  • Segre G (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–210

    Article  Google Scholar 

  • Segre G, Silberberg A (1962a) Behaviour of macroscopic rigid spheres in Poiseuille flow part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J Fluid Mech 14(01):115–135

    Article  MATH  Google Scholar 

  • Segre G, Silberberg A (1962b) Behaviour of macroscopic rigid spheres in Poiseuille flow part 2. Experimental results and interpretation. J Fluid Mech 14(01):136–157

    Article  MATH  Google Scholar 

  • Shamloo A, Selahi A, Madadelahi M (2016) Designing and modeling a centrifugal microfluidic device to separate target blood cells. J Micromech Microeng 26(3):035017

    Article  Google Scholar 

  • Shelby JP, Chiu DT (2004) Controlled rotation of biological micro-and nano-particles in microvortices. Lab Chip 4(3):168–170

    Article  Google Scholar 

  • Shelby JP, Lim DS, Kuo JS, Chiu DT (2003) Microfluidic systems: high radial acceleration in microvortices. Nature 425(6953):38

    Article  Google Scholar 

  • Siegrist J, Burger R, Kirby D, Zavattoni L, Kijanka G, Ducrée J (2011) Stress-free centrifugomagnetic 2D-separation of cancer cells in a stopped-flow mode. In: 15th International conference on miniaturized systems for chemistry and life sciences (uTAS). Seattle, pp 2–6

  • Sim TS, Kwon K, Park JC, Lee J-G, Jung H-I (2011) Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels. Lab Chip 11(1):93–99

    Article  Google Scholar 

  • Smith S, Mager D, Perebikovsky A, Shamloo E, Kinahan D, Mishra R, Torres Delgado SM, Kido H, Saha S, Ducrée J (2016) CD-based microfluidics for primary care in extreme point-of-care settings. Micromachines 7(2):22

    Article  Google Scholar 

  • Sollier E, Go DE, Che J, Gossett DR, O’Byrne S, Weaver WM, Kummer N, Rettig M, Goldman J, Nickols N (2014) Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip 14(1):63–77

    Article  Google Scholar 

  • Steigert J, Grumann M, Dube M, Streule W, Riegger L, Brenner T, Koltay P, Mittmann K, Zengerle R, Ducrée J (2006) Direct hemoglobin measurement on a centrifugal microfluidic platform for point-of-care diagnostics. Sens Actuators, A 130:228–233

    Article  Google Scholar 

  • Steigert J, Brenner T, Grumann M, Riegger L, Lutz S, Zengerle R, Ducrée J (2007) Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk. Biomed Microdevice 9(5):675–679

    Article  Google Scholar 

  • Strohmeier O, Keller M, Schwemmer F, Zehnle S, Mark D, von Stetten F, Zengerle R, Paust N (2015a) Centrifugal microfluidic platforms: advanced unit operations and applications. Chem Soc Rev 44:6187–6229

    Article  Google Scholar 

  • Strohmeier O, Keller M, Schwemmer F, Zehnle S, Mark D, von Stetten F, Zengerle R, Paust N (2015b) Centrifugal microfluidic platforms: advanced unit operations and applications. Chem Soc Rev 44(17):6187–6229

    Article  Google Scholar 

  • Tang M, Wang G, Kong S-K, Ho H-P (2016) A review of biomedical centrifugal microfluidic platforms. Micromachines 7(2):26

    Article  Google Scholar 

  • Thio THG, Soroori S, Ibrahim F, Al-Faqheri W, Soin N, Kulinsky L, Madou M (2013) Theoretical development and critical analysis of burst frequency equations for passive valves on centrifugal microfluidic platforms. Med Biol Eng Comput 51(5):525–535

    Article  Google Scholar 

  • Tomlinson MJ, Tomlinson S, Yang XB, Kirkham J (2013) Cell separation: terminology and practical considerations. J Tissue Eng 4:2041731412472690

    Article  Google Scholar 

  • Warkiani ME, Guan G, Luan KB, Lee WC, Bhagat AAS, Chaudhuri PK, Tan DS-W, Lim WT, Lee SC, Chen PC (2014) Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14(1):128–137

    Article  Google Scholar 

  • Warkiani ME, Tay AKP, Guan G, Han J (2015a) Membrane-less microfiltration using inertial microfluidics. Scientific reports 5

  • Warkiani ME, Tay AKP, Khoo BL, Xiaofeng X, Han J, Lim CT (2015b) Malaria detection using inertial microfluidics. Lab Chip 15(4):1101–1109

    Article  Google Scholar 

  • Warkiani ME, Wu L, Tay AKP, Han J (2015c) Large volume microfluidic cell sorting. Annu Rev Biomed Eng 17(1):1–34

    Article  Google Scholar 

  • Warkiani ME, Khoo BL, Wu L, Tay AKP, Bhagat AAS, Han J, Lim CT (2016) Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat Protoc 11(1):134–148

    Article  Google Scholar 

  • Zhang J, Guo Q, Liu M, Yang J (2008) A lab-on-CD prototype for high-speed blood separation. J Micromech Microeng 18(12):125025

    Article  Google Scholar 

  • Zhang J, Yan S, Yuan D, Alici G, Nguyen N-T, Warkiani ME, Li W (2016) Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16(1):10–34

    Article  Google Scholar 

  • Zhao Y, Schwemmer F, Zehnle S, von Stetten F, Zengerle R, Paust N (2015) Centrifugo-pneumatic sedimentation, re-suspension and transport of microparticles. Lab Chip 15(21):4133–4137

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the German Academic Exchange Service (DAAD), project entitled “Inertial focusing for continuous nanoparticles separation in femtosecond laser 3D micromachined curved channels,” and Seed-fund number SATS 27/2016 provided by German Jordanian University—Amman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ala’aldeen Al-Halhouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Faqheri, W., Thio, T.H.G., Qasaimeh, M.A. et al. Particle/cell separation on microfluidic platforms based on centrifugation effect: a review. Microfluid Nanofluid 21, 102 (2017). https://doi.org/10.1007/s10404-017-1933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1933-4

Keywords

Navigation