Skip to main content
Log in

Evaluating Mitochondrial Membrane Potential in Cells

  • Original Paper
  • Published:
Bioscience Reports

Abstract

Permeant cationic fluorescent probes are widely employed to monitor mitochondrial transmembrane potential and its changes. The application of such potential-dependent probes in conjunction with both fluorescence microscopy and fluorescence spectroscopy allows the monitoring of mitochondrial membrane potential in individual living cells as well as in large population of cells. These approaches to the analysis of membrane potential is of extremely high value to obtain insights into both the basic energy metabolism and its dysfunction in pathologic cells. However, the use of fluorescent molecules to probe biological phenomena must follow the awareness of some principles of fluorescence emission, quenching, and quantum yield since it is a very sensitive tool, but because of this extremely high sensitivity it is also strongly affected by the environment. In addition, the instruments used to monitor fluorescence and its changes in biological systems have also to be employed with cautions due to technical limits that may affect the signals. We have therefore undertaken to review the most currently used analytical methods, providing a summary of practical tips that should precede data acquisition and subsequent analysis. Furthermore, we discuss the application and feasibility of various techniques and discuss their respective strength and weakness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baracca A, Barogi S, Carelli V, Lenaz G, Solaini G (2000) Catalytic activities of mitochondrial ATP synthase in patients with mitochondrial DNA T8993G mutation in the ATPase 6 gene encoding subunit a. J Biol Chem 275:4177–4182

    Article  PubMed  CAS  Google Scholar 

  • Baracca A, Sgarbi G, Solaini G, Lenaz G (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochim Biophys Acta 1606:137–146

    Article  PubMed  CAS  Google Scholar 

  • Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F (1999) Mitochondria and cell death: mechanistic aspects and methodological issues. Eur J Biochem 264:687–701

    Article  PubMed  CAS  Google Scholar 

  • Chen LB (1988) Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4:155–181

    Article  PubMed  CAS  Google Scholar 

  • Cooper CE, Bruce D, Nicholls P (1990) Use of oxonol V as a probe of membrane potential in proteoliposomes containing cytochrome oxidase in the submitochondrial orientation. Biochemistry 29:3859–3865

    Article  PubMed  CAS  Google Scholar 

  • Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 97:40–45

    Article  Google Scholar 

  • Dubot A, Godinot C, Dumur V, Sablonniere B, Stojkovic T, Cuisset JM, Vojtiskova A, Pecina P, Jesina P, Houstek J (2004) GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene. Biochem Biophys Res Commun 313:687–693

    Article  PubMed  CAS  Google Scholar 

  • Dykens JA, Stout AK (2001) Assessment of mitochondrial membrane potential in situ using single potentiometric dyes and a novel fluorescence resonance energy transfer technique. Methods Cell Biol. 65:285–309

    PubMed  CAS  Google Scholar 

  • Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM, (1988) Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J 53:785–794

    PubMed  CAS  Google Scholar 

  • Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850:436–448

    Article  PubMed  CAS  Google Scholar 

  • Farkas DL, Wei MD, Febbroriello P, Carson JH, Loew LM (1989) Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys J 56:1053–1069

    PubMed  CAS  Google Scholar 

  • Jackson JB, Nicholls DG (1986) Methods for the determination of membrane potential in bioenergetic systems. Methods Enzymol 127:557–577

    PubMed  CAS  Google Scholar 

  • Jayaraman S (2005) Flow cytometric determination of mitochondrial membrane potential changes during apoptosis of T lymphocytic and pancreatic beta cell lines: comparison of tetramethylrhodamineethylester (TMRE), chloromethyl-X-rosamine (H2-CMX-Ros) and MitoTracker Red 580 (MTR580). J Immunol Methods 306:68–79

    Article  PubMed  CAS  Google Scholar 

  • Johnson LV, Walsh ML, Bockus BJ, Chen LB (1981) Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 88:526–535

    Article  PubMed  CAS  Google Scholar 

  • Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA 77:990–994

    Article  PubMed  CAS  Google Scholar 

  • Juan G, Cavazzoni M, Saez GT, O’Connor JA (1994) A fast kinetic method for assessing mitochondrial membrane potential in isolated hepatocytes with rhodamine 123 and flow cytometry. Cytometry 15:335–342

    Article  PubMed  CAS  Google Scholar 

  • Kalenak A, McKenzie RJ, Conover TE (1991) Response of the electrochromic dye, merocyanine 540, to membrane potential in rat liver mitochondria. J Membr Biol 123:23–31

    Article  PubMed  CAS  Google Scholar 

  • Kinnally KW, Tedeschi H, Maloff BL (1978) Use of dyes to estimate the electrical potential of the mitochondrial membrane. Biochemistry 17:3419–3428

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov AV, Troppmair J, Sucher R, Hermann M, Saks V, Margreiter R (2006) Mitochondrial subpopulations and heterogeneity revealed by confocal imaging: possible physiological role? Biochim Biophys Acta 1757:686–691

    Article  PubMed  CAS  Google Scholar 

  • Labajova A, Vojtiskova A, Krivakova P, Kofranek J, Drahota Z, Houstek J (2006) Evaluation of mitochondrial membrane potential using a computerized device with a tetraphenylphosphonium-selective electrode. Anal Biochem 353:37–42

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz JR (1983) In Principle of fluorescence spectroscopy. Plenum Press, New York

    Google Scholar 

  • Le SB, Holmuhamedov EL, Narayanan VL, Sausville EA, Kaufmann SH (2006) Adaphostin and other anticancer drugs quench the fluorescence of mitochondrial potential probes. Cell Death Differ 13:151–159

    Article  PubMed  CAS  Google Scholar 

  • Lecoeur H, Langonne A, Baux L, Rebouillat D, Rustin P, Prevost MC, Brenner C, Edelman L, Jacotot E (2004) Real-time flow cytometry analysis of permeability transition in isolated mitochondria. Exp Cell Res 294:106–117

    Article  PubMed  CAS  Google Scholar 

  • Lemasters JJ, Chacon E, Ohata H, Harper IS, Nieminen AL, Tesfai SA, Herman B (1995) Measurement of electrical potential, pH, and free calcium ion concentration in mitochondria of living cells by laser scanning confocal microscopy. Methods Enzymol 260:428–444

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P, Moyle J (1969) Estimation of the membrane potential and pH differences across the cristae membrane of rat liver mitochondria. Eur J Biochem 7:471–484

    Article  PubMed  CAS  Google Scholar 

  • Montana V, Farkas DL, Loew LM (1989) Dual-wavelength ratiometric measurements of membrane potential. Biochemistry USA 28:4536–4539

    Article  CAS  Google Scholar 

  • Nakayama S, Sakuyama T, Mitaku S, Ohta Y (2002) Fluorescence imaging of metabolic responses in single mitochondria. Biochem Biophys Res Commun 290:23–28

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG (2005) Commentary on: ‘old and new data, new issues: the mitochondrial Deltapsi’ by H. Tedeschi. Biochim Biophys Acta 1710:63–65

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG (2006) Simultaneous monitoring of ionophore- and inhibitor-mediated plasma and mitochondrial membrane potential changes in cultured neurons. J Biol Chem 281:14864–14874

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–174

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (2002) Bioenergetics 3. Academic press, London

    Google Scholar 

  • O’Reilly CM, Fogarty KE, Drummond RM, Tuft RA, Walsh JV Jr (2003) Quantitative analysis of spontaneous mitochondrial depolarizations. Biophys J 85:3350–3359

    PubMed  CAS  Google Scholar 

  • Plasek J, Vojtıskova A, Houstek J (2005) Flow-cytometric monitoring of mitochondrial depolarisation: from fluorescence intensities to millivolts. J Photochem Photobiol – Biol 78:99–108

    Article  CAS  Google Scholar 

  • Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480–4486

    Article  PubMed  CAS  Google Scholar 

  • Rottenberg H (1984) Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations. J Membr Biol 81:127–138

    Article  PubMed  CAS  Google Scholar 

  • Rottenberg H, Wu S (1998) Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim Biophys Acta 404:393–404

    Google Scholar 

  • Sack MN (2006) Exploring mitochondria in the intact ischemic heart: advancing technologies to image intracellular function. Circulation 114:1452–1454

    Article  PubMed  Google Scholar 

  • Schatten G, Pawley JB (1988) Advances in optical, confocal, and electron microscopic imaging for biomedical researchers. Science 239(4841 Pt 2):G164, G48

    Google Scholar 

  • Sgarbi G, Baracca A, Lenaz G, Carelli V, Valentino L, Solaini G (2006) Inefficient coupling between proton transport and ATP synthesis may be the pathogenic mechanism for NARP and Leigh syndrome resulting from the T8993G mutation in mtDNA. Biochem J 395:493–500

    Article  PubMed  CAS  Google Scholar 

  • Smith JC (1990) Potential-sensitive molecular probes in membranes of bioenergetic relevance, Biochim. Biophys Acta 1016:1–28

    Article  CAS  Google Scholar 

  • Toescu EC, Verkhratsky A (2000) Assessment of mitochondrial polarization status in living cells based on analysis of the spatial heterogeneity of rhodamine 123 fluorescence staining. Eur J Physiol 440:941–947

    Article  CAS  Google Scholar 

  • Ubl JJ, Chatton JY, Chen S, Stucki JW (1996) A critical evaluation of in situ measurement of mitochondrial electrical potentials in single hepatocytes. Biochim Biophys Acta 1276:124–132

    Article  PubMed  Google Scholar 

  • Vergun O, Reynolds IJ (2004) Fluctuations in mitochondrial membrane potential in single isolated brain mitochondria: modulation by adenine nucleotides and Ca2+. Biophys J 87:3585–3593

    Article  PubMed  CAS  Google Scholar 

  • Zanotti A, Azzone GF (1980) Safranine as membrane potential probe in rat liver mitochondria. Arch Biochem Biophys 201:255–265

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Solaini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solaini, G., Sgarbi, G., Lenaz, G. et al. Evaluating Mitochondrial Membrane Potential in Cells. Biosci Rep 27, 11–21 (2007). https://doi.org/10.1007/s10540-007-9033-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10540-007-9033-4

Keywords

Navigation