Skip to main content
Log in

Response of the electrochromic dye, merocyanine 540, to membrane potential in rat liver mitochondria

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Merocyanine binds extensively to rat liver mitochondria in spite of the presence of a sulfonic acid group which would suggest only limited penetration through the membrane. Passive binding shows both tight and weak binding components and is dependent on salt concentration and ionic strength in accord with the Gouy-Chapman theory. The binding of merocyanine to mitochondria is accompanied by both a fluorescence enhancement and a spectral shift. Induction of an electrical field by either respiration or K+ diffusion potential results in a partial reversal of the spectral shift seen on dye binding. At low temperature, the merocyanine spectral response to an electrical field is biphasic, consisting of a fast phase with at 1/2 of less than 1 sec at 15°C and a slower phase which may vary considerably in rate and extent with conditions. The spectral shift during the two phases appears similar, but differ in sensitivity to ionic strength and temperature. The spectral shift during the fast phase at 15°C indicates that the major component is a decrease in bound monomer and an increase in the aqueous dimer, indicating an “on-off” mechanism. It is suggested that the fast and slow phases of the merocyanine response may be due to two different populations of dye, possibly located at the outer and inner surfaces, respectively, of the mitochondrial membrane. The electrophoretic movement of the dye located in the membrane interior would result in the temperature-sensitive slow phase response. Demonstration of the proportionality of the fast phase response to the magnitude of the membrane potential suggests the usefulness of merocyanine in studies with mitochondrial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiuchi, T., Kobatake, Y. 1979. Electrostatic interaction between merocyanine 540 and liposomal and mitochondrial membranes.J. Membrane Biol. 45:233–244

    Article  Google Scholar 

  • Azzone, G.F., Pietrobon, D., Zoratti, M. 1984. Determination of the proton electrochemical gradient across biological membranes.Curr. Top. Bioenerg. 13:2–77

    Google Scholar 

  • Cohen, L.B., Salzberg, B.N. 1978. Optical measurements of membrane potential.Rev. Physiol. Biochem. Pharmacol. 83:35–88

    PubMed  Google Scholar 

  • Colonna, R., Massari, S., Azzone, G.F. 1973. The problem of cation-binding sites in the energized membrane of intact mitochondria.Eur. J. Biochem. 34:577–585

    Article  PubMed  Google Scholar 

  • Conover, T.E. 1975. Influence of nonionic organic solutes on various reactions of energy conservation and utilization.Ann. NY Acad. Sci. 243:24–37

    PubMed  Google Scholar 

  • Conover, T.E., Schneider, R.F. 1981. Interaction of certain cationic dyes with the respiratory chain of rat liver mitochondria.J. Biol. Chem. 256:402–408

    PubMed  Google Scholar 

  • Dragsten, P.R., Webb, W.W. 1978. Mechanism of the membrane potential sensitivity of the fluorescent membrane probe merocyanine 540.Biochemistry 17:5228–5240

    Article  PubMed  Google Scholar 

  • Esfahani, M., Solomon, D.J., Mele., L., Teter, M.N. 1979. Lipid-protein interactions in membranes: Effect of lipid composition on mobility of spin-labeled cysteine residues in yeast plasma membrane.J. Supramol. Struct. 10:277–286

    Article  PubMed  Google Scholar 

  • George, E.R., Nyirjesy, P., Basson, M., Ernst, L.A., Pratap, P.R., Freedman, J.C., Waggoner, A.S. 1988. Impermeant potential-sensitive oxonol dyes: I. Evidence for an “on-off” mechanism.J. Membrane Biol. 103:245–253

    Article  Google Scholar 

  • Masamoto, K., Matsuura, K., Itoh, S., Nishimura, M. 1981. Membrane potential and surface potential-induced absorbance changes of merocyanine dyes added to chromatophores fromRhodopseudomonas sphaeroides.Biochim. Biophys. Acta 638:108–115

    Google Scholar 

  • McKenzie, R.J., Azzone, G.F., Conover, T.E. 1991. Bulk phase proton fluxes during the generation of membrane potential in rat liver mitochondria.J. Biol. Chem. 266:803–809

    PubMed  Google Scholar 

  • McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces.Curr. Top. Membr. Transp.9:71–144

    Google Scholar 

  • Mitchell, P., Moyle, J. 1969. Estimation of membrane potential and pH differences across the cristae, membranes of rat liver mitochondria.Eur. J. Biochem. 7:471–484

    PubMed  Google Scholar 

  • Robertson, D.E., Rottenberg, H. 1983. Membrane potential and surface potential in mitochondria. Fluorescence and binding of 1-anilinonaphthalene-8-sulfonate.J. Biol. Chem. 258:11039–11048

    PubMed  Google Scholar 

  • Ross, W.N., Salzberg, B.M., Cohen, L.B., Davila, H.V. 1974. A large change in dye absorption during action potential.Biophys. J. 14:983–986

    PubMed  Google Scholar 

  • Ross, W.N., Salzberg, B.M., Cohen, L.B., Grinwald, A., Davila, H.V., Waggoner, A.S., Wang, C.H. 1977. Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: Optical measurement of membrane potential.J. Membrane Biol. 33:141–183

    Article  Google Scholar 

  • Rottenberg, H. 1989. Proton electrochemical potential gradient in vesicles, organelles, and prokaryotic cells.In: Methods in Enzymology. S. Fleischer, and B. Fleischer, editors. Vol. 172, pp. 63–84. Academic, New York

    Google Scholar 

  • Salama, G., Morad, M. 1976. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart.Science 191:485–487

    PubMed  Google Scholar 

  • Salama, G., Morad, M. 1979. Optical probes of membrane potential in heart muscle.J. Physiol. 292:267–295

    PubMed  Google Scholar 

  • Smith, J.C. 1990. Potential-sensitive molecular probes in membranes of bioenergetic relevance.Biochim. Biophys. Acta 1016:1–28

    PubMed  Google Scholar 

  • Smith, J.C., Frank, S.J., Bashford, C.L., Chance, B., Rudkin, B. 1980. Kinetics of the association of potential-sensitive dyes with model and energy-transducing membranes: Implications for fast probe response times.J. Membrane Biol. 54:127–139

    Article  Google Scholar 

  • Smith, J.C., Graves, J.M., Williamson, M. 1984. The interaction of the potential-sensitive molecular probe merocyanine 540 with phosphorylating beef heart submitochondrial particles under equilibrium and time-resolved conditions.Arch. Biochem. Biophys. 231:430–453

    Article  PubMed  Google Scholar 

  • Tasahi, J., Warashina, A. 1976. Dye-membrane interaction and its changes during nerve excitation.Photochem. Photobiol. 24:191–207

    PubMed  Google Scholar 

  • Verkman, A.S. 1987. Mechanism and kinetics of merocyanine 540 binding to phospholipid membranes.Biochemistry 26:4050–4056

    Article  PubMed  Google Scholar 

  • Verkman, A.S., Frosch, M.P. 1985. Temperature-jump studies of merocyanine 540 relaxation kinetics in lipid bilayer membranes.Biochemistry 24:7117–7122

    Article  PubMed  Google Scholar 

  • Waggoner, A.S. 1976. Optical probes of membrane potential.J. Membrane Biol. 27:317–334

    Article  Google Scholar 

  • Waggoner, A.S. 1979. Dye indicators of membrane potential.Annu. Rev. Biophys. Bioenerg. 8:47–68

    Article  Google Scholar 

  • Waggoner, A.S., Grinwald, A. 1977. Mechanism of rapid optical changes of potential sensitive, dyes.Ann. NY Acad. Sci. 303:217–241

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalenak, A., McKenzie, R.J. & Conover, T.E. Response of the electrochromic dye, merocyanine 540, to membrane potential in rat liver mitochondria. J. Membrain Biol. 123, 23–31 (1991). https://doi.org/10.1007/BF01993959

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01993959

Key Words

Navigation