Skip to main content
Log in

Membrane potential and surface potential in mitochondria: Uptake and binding of lipophilic cations

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The uptake and binding of the lipophilic cations ethidium+, tetraphenylphosphonium+ (TPP+), triphenylmethylphosphonium+ (TPMP+), and tetraphenylarsonium+ (TPA+) in rat liver mitochondria and submitochondrial particles were investigated. The effects of membrane potential, surface potentials and cation concentration on the uptake and binding were elucidated. The accumulation of these cations by mitochondria is described by an uptake and binding to the matrix face of the inner membrane in addition to the binding to the cytosolic face of the inner membrane. The apparent partition coefficients between the external medium and the cytosolic surface of the inner membrane (K' o) and the internal matrix volume and matrix face of the inner membrane (K' i) were determined and were utilized to estimate the membrane potential Δψ from the cation accumulation factorR c according to the relation Δψ=RT/ZF ln [(R cVo−K'o)/(Vi+K'i)] whereV o andV i are the volume of the external medium and the mitochondrial matrix, respectively, andR c is the ratio of the cation content of the mitochondria and the medium. The values of Δψ estimated from this equation are in remarkably good agreement with those estimated from the distribution of86Rb in the presence of valinomycin. The results are discussed in relation to studies in which the membrane potential in mitochondria and bacterial cells was estimated from the distribution of lipophilic cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azzone, G.V., Bragadin, M., Pozzan, T., Dell, A.P. 1976. Proton electrochemical potential in steady state rat liver mitochondria.Biochim. Biophys. Acta 459:96–109

    Google Scholar 

  2. Bakker, E.P. 1982. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.Biochim. Biophys. Acta 681:85–94

    Google Scholar 

  3. Cafiso, D.S., Hubbell, W.L. 1978. Estimation of transmembrane potentials from phase equilibria of hydrophobic paramagnetic ions.Biochemistry 17:187–195

    Google Scholar 

  4. Cafiso, D.S., Hubbell, W.L. 1982. Transmembrane electrical currents of spin-labeled hydrophobic ions.Biophys. J. 39:263–272

    Google Scholar 

  5. Felle, H., Porter, J.S., Slayman, C.L., Kaback, H.R. 1980. Quantitative measurements of membrane potential inEscherichia coli.Biochemistry 19:3585–3590

    Google Scholar 

  6. Harold, F.M. 1972. Conservation and transformation of energy by bacterial membranes.Bacteriol. Rev. 36:172–230

    Google Scholar 

  7. Higuti, R., Hokota, M., Arakai, N., Hattori, A., Toni, I. 1978. Sidedness of inhibition of energy transduction in oxidative phosphorylation in rat liver mitochondria by ethidium bromide.Biochim. Biophys. Acta 503:211–222

    Google Scholar 

  8. Higuti, T., Arakaki, N., Niimi, S., Nakasima, S., Saito, R., Tani, I., Ota, F. 1980. Anisotropic inhibition of energy transduction in oxidative phosphorylation in rat liver mitochondria by tetraphenylarsonium.J. Biol. Chem. 255:7631–7636

    Google Scholar 

  9. Hoek, J.B., Nicholls, D.G., Williamson, J.R. 1980. Determination of the mitochondrial protonmotive force in isolated hepatocytes.J. Biol. Chem. 255:1458–1464

    Google Scholar 

  10. Holian, A., Wilson, D.F. 1980. Relationship of transmembrane pH and electrical gradients with respiration and adenosine 5′-triphosphate synthesis in mitochondria.Biochemistry.19:4213–4221

    Google Scholar 

  11. Lalkema, J.S., Hallingworf, K.J., Koning, W.N. 1982. The effect of probe binding on the quantitative determination of the proton-motive force in bacteria.Biochim. Biophys. Acta 681:85–94

    Google Scholar 

  12. Liberman, E.A., Topaly, V.P., Tsofina, L.M., Jasaitis, A.A., Skulachev, V.P. 1969. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria.Nature (London) 222:1076–1078

    Google Scholar 

  13. Locke, R.M., Nicholls, D.G. 1981. A re-evaluation of the role of fatty acids in the physiological regulation of the proton conductance of brown adipose tissue mitochondria.FEBS Lett. 135:249–252

    Google Scholar 

  14. Lotscher, H.R., Winterhalter, K.H., Carafoli, E., Richter, C. 1980. The energy state of mitochondria during the transport of Ca2+.Eur. J. Biochem. 110:211–216

    Google Scholar 

  15. Meyer, A.J., Van Woerkom, G.M., Steinman, R., Williamson, J.R. 1981. Inhibition by Ca2+ of carbamoylphosphate synthetase.J. Biol. Chem. 256:3445–3446

    Google Scholar 

  16. Mikes, V., Dadak, V. 1983. Berberine derivatives as cationic fluorescent probes for the investigation of the energized state of mitochondria.Biochim. Biophys. Acta 723:231–239

    Google Scholar 

  17. Mitchel, P. 1968. Chemiosmotic Coupling and Energy Transduction. Glyn Research, Bodmin, Cornwall, U.K.

    Google Scholar 

  18. Pietrobon, D., Zoratti, M., Azzone, G.F., Stucki, J.W., Walz, D. 1982. Nonequilibrium thermodynamic assessment of redox-driven H+ Pumps in mitochondria.Eur. J. Biochem. 127:483–494

    Google Scholar 

  19. Pressman, B.C. 1965. Induced active transport of ions in mitochondria.Proc. Natl. Acad. Sci. USA 53:1076–1083

    Google Scholar 

  20. Ramos, S., Schuldiner, S., Kaback, H.R. 1976. The electrochemical gradient of protons and its relationship to active transport inEscherichia coli membrane vesicles.Proc. Natl. Acad. Sci. USA 73:1892–1896

    Google Scholar 

  21. Robertson, D.E., Rottenberg, H. 1983. Membrane potential and surface charge in mitochondria.J. Biol. Chem. 258:11039–11048

    Google Scholar 

  22. Rottenberg, H. 1975. Measurements of transmembrane electrochemical proton gradients.J. Bioenerg. 7:63–76

    Google Scholar 

  23. Rottenberg, H. 1979. The measurement of membrane potential and ΔpH in cell, organelles, and vesicles.Methods Enzymol. LV:547–569

    Google Scholar 

  24. Rottenberg, H., Robertson, D.E., Rubin, E. 1980. The effect of ethanol on he temperature dependence of respiration and ATPase activities of rat liver mitochondria.Lab. Invest. 42:318–326

    Google Scholar 

  25. Rottenberg, H., Solomon, A.K. 1969. The osmotic nature of the ion-induced swelling of rat-liver mitochondria.Biochim. Biophys. Acta 193:48–57

    Google Scholar 

  26. Schuldiner, S., Kaback, H.R. 1975. Membrane potential and active transport in membrane vesicles fromEscherichia coli.Biochemistry 14:5451–5416

    Google Scholar 

  27. Scott, I.D., Nicholls, D.G. 1980. Energy transduction in intact synaptosomes.Biochem. J. 186:21–33

    Google Scholar 

  28. Shen, C., Boens, C.C., Ogawa, S. 1980. Steady-state measurements of the internal phosphorylation potential and the cross membrane electrochemical potential for proton in respiring mitochondria.Biochem. Biophys. Res. Commun. 93:243–249

    Google Scholar 

  29. Skulachev, V.P. 1971. Energy transformation in the respiratory chain.Curr. Top. Bioenerg 4:127–190

    Google Scholar 

  30. Skulachev, V.P. 1979. Membrane potential and reconstitution.Methods Enzymol. 55:586–603

    Google Scholar 

  31. Szarkowska, L., Klingenberg, M. 1963. On the role of ubiquinone in mitochondria.Biochem. Z. 338:674–695

    Google Scholar 

  32. Williamson, J.R., Steinman, R., Coll, K., Rich, T.L. 1981. Energetics of citrulline synthesis by rat liver mitochondria.J. Biol. Chem. 256:7287–7297

    Google Scholar 

  33. Wilson, D.F., Forman, N.G. 1982. Mitochondrial transmembrane pH and electrical gradients: Evaluation of their energy relationships with respiratory rate and adenosine 5′ triphosphate synthesis.Biochemistry 21:1438–1444

    Google Scholar 

  34. Zaritzky, A., Kihara, M., MacNab, R.M. 1981. Measurement of membrane potential inBacillus subtilis: A comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes.J. Membrane Biol. 63:215–231

    Google Scholar 

  35. Zilberstein, D., Schuldiner, S., Padan, E. 1979. Proton electrochemical gradient inEscherichia coli cells and its relation to active transport of lactose.Biochemistry 18:669–673

    Google Scholar 

  36. Zoratti, M., Pietrobon, D., Azzone, G.V. 1982. On the relationship between rate of ATP synthesis and H+ electrochemical gradient in rat liver mitochondria.Eur. J. Biochem. 126:443–456

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rottenberg, H. Membrane potential and surface potential in mitochondria: Uptake and binding of lipophilic cations. J. Membrain Biol. 81, 127–138 (1984). https://doi.org/10.1007/BF01868977

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868977

Key Words

Navigation