Skip to main content
Log in

The complete chloroplast genome sequence of Pseudoroegneria libanotica, genomic features, and phylogenetic relationship with Triticeae species

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Pseudoroegneria libanotica is an important herbage diploid species possessing the St genome. The St genome participates in the formation of nine perennial genera in Triticeae (Poaceae). The whole chloroplast (cp) genome of P. libanotica is 135 026 bp in length. The typical quadripartite structure consists of one large single copy of 80 634 bp, one small single copy of 12 766 bp and a pair of inverted regions (20 813 bp each). The cp genome contains 76 coding genes, four ribosomal RNA and 30 transfer RNA genes. Comparative sequence analysis suggested that: 1) the 737 bp deletion in the cp of P. libanotica was specific in Triticeae species and might transfer into its nuclear genome; 2) hot-spot regions, indels in intergenic regions and protein coding sequences mainly led to the length variation in Triticeae; 3) highly divergence regions combined with negative selection in rpl2, rps12, ccsA, rps8, ndhH, petD, ndhK, psbM, rps3, rps18, and ndhA were identified as effective molecular markers and could be considered in future phylogenetic studies of Triticeae species; and 4) ycf3 gene with rich cpSSRs was suitable for phylogeny analysis or could be used for DNA barcoding at low taxonomic levels. The cpSSRs distribution in the coding regions of diploid Triticeae species was shown for the first time and provided a valuable source for developing primers to study specific simple sequence repeat loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BS:

bootstrap value

CNS:

conserved noncoding sequences

cp:

chloroplast

cpSSR:

chloroplast simple sequence repeat

dN/dS :

ratio of nonsynonymous and synonymous substitution rates

indel:

insertion and deletion

IR:

inverted region

LSC:

large single copy

ML:

maximum likelihood

rRNA:

ribosomal RNA

SSC:

small single copy

TE:

transposable element

tRNA:

transfer RNA

References

  • Ayliffe, M.A., Scott, N.S., Timmis, J.N.: Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants. - Mol. Biol. Evol. 15: 738–745, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A.: SPAdes: a new genome assembly algorithm and its applications to singlecell sequencing. - J. comp. Biol. 19: 455–477, 2012.

    Article  CAS  Google Scholar 

  • Curci, P.L., De Paola, D., Danzi, D., Vendramin, G.G., Sonnante, G.: Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. - PLoS ONE 10: e0120589, 2015.

    Article  CAS  Google Scholar 

  • Dong, Z.Z., Fan, X., Sha, L.N., Wang, Y., Zeng, J., Kang, H.Y., Zhang, H.Q., Wang, X.L., Zhang, L., Ding, C.B., Yang, R.W., Zhou, Y.H.: Phylogeny and differentiation of the St genome in Elymus L. sensu lato (Triticeae; Poaceae) based on one nuclear DNA and two chloroplast genes. - BMC Plant Biol. 15: 179–193, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Echt, C.S., DeVerno, L., Anzidei, M., Vendramin, G.: Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. - Mol. Ecol. 7: 307–316, 1998.

    Article  Google Scholar 

  • Erixon, P., Oxelman, B.: Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. - PLoS ONE 3: e1386, 2008.

    Article  CAS  Google Scholar 

  • Fan, X., Sha, L.N., Wang, X.L., Zhang, H.Q., Kang, H.Y., Wang, Y., Zhou, Y.H.: Phylogeny and molecular evolution of the Acc1 gene within the StH genome species in Triticeae (Poaceae). - Gene 529: 57–64, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Frazer, K.A., Pachter, L., Poliakov, A., Rubin, E.M., Dubchak, I.: VISTA: computational tools for comparative genomics. - Nucl. Acids Res. 32 (Suppl.): W273–W279, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Gogniashvili, M., Jinjikhadze, T., Maisaia, I., Akhalkatsi, M., Kotorashvili, A., Kotaria, N., Beridze, T., Dudnikov, A.J.: Complete chloroplast genomes of Aegilops tauschii Coss. and Ae. cylindrica Host sheds light on plasmon D evolution. - Curr. Genet. 62: 791–798, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Gornicki, P., Zhu, H.L., Wang, J.W., Challa, G.S., Zhang, Z.Z., Gill, B.S., Li, W.L.: The chloroplast view of the evolution of polyploid wheat. - New Phytol. 204: 704–714, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Guisinger, M.M., Kuehl, J.V., Boore, J.L., Jansen, R.K.: Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. - Mol. Biol. Evol. 28: 583–600, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Hodge, C.D., Wang, H., Sun, G.L.: Phylogenetic analysis of the maternal genome of tetraploid StStYY Elymus (Triticeae: Poaceae) species and the monogenomic Triticeae based on rps16 sequence data. - Plant Scie. 178: 463–468, 2010.

    Article  CAS  Google Scholar 

  • Huotari, T., Korpelainen, H.: Complete chloroplast genome sequence of Elodea canadensis and comparative analyses with other monocot plastid genomes. - Gene 508: 96–105, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Igloi, G.L., Meinke, A., Döry, I., Kössel, H.: Nucleotide sequence of the maize chloroplast rpo B/C1/C2 operon: comparison between the derived protein primary structures from various organisms with respect to functional domains. - Mol. gen. Genet. 221: 379–394, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, K.B.: Cytology, fertility, and origin of Elymus abolinii (Drob.) Tzvelev and its F1 hybrids with Pseudoroegneria spicata, E. lanceolatus, E. dentatus ssp. ugamicus, and E. drobovii (Poaceae: Triticeae). - Genome 32: 468–474, 1989.

    Article  Google Scholar 

  • Katayama, H., Ogihara, Y.: Structural alterations of the chloroplast genome found in grasses are not common in monocots. - Curr. Genet. 23: 160–165, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, A.: Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. - Bioinformatics 28: 1647–1649, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, K.J., Lee, H.L.: Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. -DNA Res. 11: 247–261, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.L., Jansen, R.K., Chumley, T.W., Kim, K.J.: Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. - Mol. Biol. Evol. 24: 1161–1180, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Li, J.L., Wang, S., Jing, Y., Wang, L., Zhou, S.L.: A modified CTAB protocol for plant DNA extraction. - Chin. Bull. Bot. 48: 72–78, 2013a.

    Article  CAS  Google Scholar 

  • Li, Q, Wan, J.M.: SSRHunter: development of a local searching software for SSR sites. - Hereditas 27: 808–810, 2005.

    PubMed  Google Scholar 

  • Li, R., Ma, P.F., Wen, J., Yi, T.S.: Complete sequencing of five Araliaceae chloroplast genomes and the phylogenetic implications. - PLoS ONE 8: e78568, 2013b.

    Article  CAS  Google Scholar 

  • Li, X.W., Yang, Y., Henry, R.J., Rossetto, M., Wang, Y.T., Chen, S.L.: Plant DNA barcoding: from gene to genome. - Biol. Rev. 90: 157–166, 2015.

    Article  PubMed  Google Scholar 

  • Liu, Q.L., Ge, S., Tang, H.B., Zhang, X.L., Zhu, G.F., Lu, B.R.: Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. - New Phytol. 170: 411–420, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Lu, B.R.: The genus Elymus L. In: Proceedings of the 2nd International Triticeae Symposium. Pp. 219–233. Logan 1994.

    Google Scholar 

  • Luo, R.B., Liu, B.H., Xie, Y.L., Li, Z.Y., Huang, W.H., Yuan, J.Y., He, G.Z., Chen, Y.X., Pan, Q., Liu, Y.J., Tang, J.B., Wu, G.X., Zhang, H., Shi, Y.J., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C.L., Cheung, D.W., Yiu, S.M., Peng, S.L., Zhu, X.Q., Liu, G.M., Liao, X.K., Li, Y.R., Yang, H.M., Wang, J., Lam, T.W., Wang, J.: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. - GigaScience 1: 18, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, P.F., Zhang, Y.X., Zeng, C.X., Guo, Z.H., Li, D.Z.: Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (Poaceae). - Syst. Biol. 63: 933–950, 2014.

    Article  PubMed  Google Scholar 

  • Mariotti, R., Cultrera, N.G., Díez, C.M., Baldoni, L., Rubini, A.: Identification of new polymorphic regions and differentiation of cultivated olives (Olea europaea L.) through plastome sequence comparison. - BMC Plant Biol. 10: 211–223, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mason-Gamer, R.J., Orme, N.L., Anderson, C.M.: Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. - Genome 45: 991–1002, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo, M., Ito, Y., Yamauchi, R., Obokata, J.: The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast–nuclear DNA flux. - Plant Cell. 17: 665–675, 2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melotto-Passarin, D., Tambarussi, E., Dressano, K., De Martin, V., Carrer, H.: Characterization of chloroplast DNA microsatellites from Saccharum spp and related species. - Genet. mol. Res. 10: 2024–2033, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Middleton, C.P., Senerchia, N., Stein, N., Akhunov, E.D., Keller, B., Wicker, T., Kilian, B.: Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. - PLoS ONE 9: e85761, 2014.

    Article  CAS  Google Scholar 

  • Millen, R.S., Olmstead, R.G., Adams, K.L., Palmer, J.D., Lao, N.T., Heggie, L., Kavanagh, T.A., Hibberd, J.M., Gray, J.C., Morden, C.W., Calieg, P.J., Jermiinh, L.S, Wolfe, K.H.: Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. - Plant Cell 13: 645–658, 2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neuhaus, H., Emes, M.: Nonphotosynthetic metabolism in plastids. - Annu. Rev. Plant Biol. 51: 111–140, 2000.

    Article  CAS  Google Scholar 

  • Ogihara, Y., Terachi, T., Sasakuma, T.: Structural analysis of length mutations in a hot-spot region of wheat chloroplast DNAs. -Curr. Genet. 22: 251–258, 1992.

  • Palmer, J.D.: Plastid chromosomes: structure and evolution. - Mol. Biol. Plastids 7: 5–53, 1991.

    Article  Google Scholar 

  • Parks, M., Cronn, R., Liston, A.: Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. - BMC Biol. 7: 84–100, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perry, A.S., Wolfe, K.H.: Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. - J. mol. Evol. 55: 501–508, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Posada, D., Crandall, K.A.: Modeltest: testing the model of DNA substitution. - Bioinformatics 14: 817–818, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Provan, J., Powell, W., Hollingsworth, P.M.: Chloroplast microsatellites: new tools for studies in plant ecology and evolution. - Trends Ecol. Evol. 16: 142–147, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Qian, J., Song, J.Y., Gao, H.H., Zhu, Y.J., Xu, J., Pang, X.H., Yao, H., Sun, C., Li, X.E., Li, C.Y., Liu, J.Y., Xu, H.B., Chen, S.L.: The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. - PloS ONE 8: e57607, 2013.

    Article  CAS  Google Scholar 

  • Redinbaugh, M.G., Jones, T.A., Zhang, Y.: Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids. - Genome 43: 846–852, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Ezpeleta, N., Brinkmann, H., Burey, S.C., Roure, B., Burger, G., Lö ffelhardt, W., Bohnert, H.J., Philippe, H., Lang, B.F.: Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. - Curr. Biol. 15: 1325–1330, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Rose, O., Falush, D.: A threshold size for microsatellite expansion. - Mol. Biol. Evol. 15: 613–615, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Rozas, J., Sánchez-DelBarrio, J.C., Messeguer, X., Rozas, R.: DnaSP, DNA polymorphism analyses by the coalescent and other methods. - Bioinformatics 19: 2496–2497, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Schaack, S., Gilbert, C., Feschotte, C.: Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. - Trends Ecol. Evol. 25: 537–546, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sha, L.N., Fan, X., Yang, R.W., Kang, H.Y., Ding, C.B., Zhang, L., Zheng, Y.L., Zhou, Y.H.: Phylogenetic relationships between Hystrix and its closely related genera (Triticeae; Poaceae) based on nuclear Acc1, DMC1 and chloroplast trnL-F sequences. - Mol. Phylogenet. Evol. 54: 327–335, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Sun, G.: Genetic diversity of rbcL gene in Elymus trachycaulus complex and their phylogenetic relationships to several Triticeae species. - Genet. Resour. Crop Evol. 54: 1737–1746, 2007.

    Article  CAS  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S.: MEGA6: molecular evolutionary genetics analysis version 6.0. - Mol. Biol. Evol. 30: 2725–2729, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timme, R.E., Kuehl, J.V., Boore, J.L., Jansen, R.K.: A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. - Amer. J.Bot. 94: 302–312, 2007.

    Article  CAS  Google Scholar 

  • Timmis, J.N., Ayliffe, M.A., Huang, C.Y., Martin, W.: Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. - Natur. Rev. Genet. 5: 123–135, 2004.

    Article  CAS  Google Scholar 

  • Torabinejad, J., Mueller, R.: Genome constitution of the Australian hexaploid grass Elymus scabrus (Poaceae: Triticeae). - Genome 36: 147–151, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi, T., Nagai, T., Kapoor, M., Sugita, M., Ito, M., Ito, S., Tsudzuki, J., Nakashima, K., Tsudzuki, T., Suzuki, Y., Hamada, A., Ohta, T., Inamura, A., Yoshinaga, K., Sugiura, M.: Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division. - Proc. Nat. Acad. Sci. USA 94: 5967–5972, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Weng, M.L., Ruhlman, T.A., Gibby, M., Jansen, R.K.: Phylogeny, rate variation, and genome size evolution of Pelargonium (Geraniaceae). - Mol. Phylogenet. Evol. 64: 654–670, 2012.

    Article  PubMed  Google Scholar 

  • Wicke, S., Schneeweiss, G.M., Müller, K.F., Quandt, D.: The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. - Plant mol. Biol. 76: 273–297, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wyman, S.K., Jansen, R.K., Boore, J.L.: Automatic annotation of organellar genomes with DOGMA. - Bioinformatics. 20: 3252–3255, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z.H., Bielawski, J.P.: Statistical methods for detecting molecular adaptation. - Trends Ecol. Evol. 15: 496–503, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Yen, C., Yang, J.L.: Biosystematics of Triticeae. Vol. 4. - China Agricultural Press, Beijing 2011.

    Google Scholar 

  • Zhang, C., Fan, X., Yu, H.Q., Zhang, L., Wang, X.L., Zhou, Y.H.: Different maternal genome donor to Kengyilia species inferred from chloroplast trnL-F sequences. - Biol. Plant. 53: 759–763, 2009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Zhou.

Additional information

Acknowledgments: The authors are thankful to the National Natural Science Foundation of China (Grant Nos. 31470305, 31270243, and 31200252), the National Key Research and Development of China (2016YFD0102000), and the fund from the Science and Technology Bureau and Education Bureau of Sichuan Province, China. We are very grateful to the American National Plant Germplasm System (Pullman, Washington, USA) for providing seed material for this study. The first two authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D.D., Sha, L.N., Tang, C. et al. The complete chloroplast genome sequence of Pseudoroegneria libanotica, genomic features, and phylogenetic relationship with Triticeae species. Biol Plant 62, 231–240 (2018). https://doi.org/10.1007/s10535-017-0759-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-017-0759-y

Additional key words

Navigation