Skip to main content
Log in

Nucleotide sequence of the maize chloroplast rpo B/C1/C2 operon: Comparison between the derived protein primary structures from various organisms with respect to functional domains

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The genes (rpo B/C1/C2) coding for the β, β′, β″ subnits of maize (Zea mays) chloroplast RNA polymerase have been located on the plastome and their nucleotide sequences established. The operon is part of a large inversion with respect to the tobacco and spinach chloroplast genomes and is flanked by the genes trnC and rps2. Notable features of the nucleotide sequence are the loss of an intron in rpoC1, and an insertion of approximately 450 by in rpOC2 compared to the dicotyledons tobacco, spinach and liver-wort. The derived amino acid sequence of this additional monocotyledon specific sequence is characterized by acidic heptameric repeat units containing stretches of glutamic acid, tyrosines and leucines with regular spacing. Other structural motifs, such as a nucleotide binding domain in the β subunit and a zinc finger in the β′ subunit, are compared at the amino acid level throughout the RNA polymerase subunits with the enzymes from other organisms in order to identify functionally important conserved regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison LA, Moyle M, Shales M, Ingles CJ (1985) Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42:599–610

    Google Scholar 

  • Argos P (1988) A sequence motif in many polymerases. Nucleic Acids Res 16:9909–9916

    Google Scholar 

  • Berghöfer B, Kröckel L, Körtner C, Truss M, Schallenberg J, Klein A (1988) Relatedness of archaebacterial RNA polymerase core subunits to their eubacterial and eukaryotic equivalents. Nucleic Acids Res 16:8113–8128

    Google Scholar 

  • Briat JF, Laulhere JP, Mache R (1979) Transcription activity of a DNA-protein complex isolated from spinach plastids. Eur J Biochem 98:285–292

    Google Scholar 

  • Briat JF, Lescure AM, Mache R (1986) Transcription of the chloroplast DNA: a review. Biochimie 68:981–990

    Google Scholar 

  • Carter PJ, Winter G, Wilkinson AJ, Fersht AR (1984) The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Cell 38:835–840

    Google Scholar 

  • Cisek LJ, Corden JL (1989) Phosphorylation of RNA polymerase by the murine homologue of the cell-cycle control protein cdc2. Nature 339:679–684

    Google Scholar 

  • Cozens AL, Walker JE (1986) Pea chloroplast DNA encodes homologues of Escherichia coli ribosomal subunit S2 and the β′ subunit of RNA polymerase. Biochem J 236:453–460

    Google Scholar 

  • Evers R, Hammer A, Köck J, Jess W, Borst P, Mémet S, Cornelissen AWCA (1989a) Trypanosoma brucei contains two RNA polymerase II largest subunit genes with an altered C-terminal domain. Cell 56:585–597

    Google Scholar 

  • Evers R, Hammer A, Cornelissen AWCA (1989b) Unusual C-terminal domain of the largest subunit of RNA polymerase II of Crithidia fasciculata. Nucleic Acids Res 17:3403–3413

    Google Scholar 

  • Falkenburg D, Dworniczak B, Faust DM, Bautz EKF (1987) RNA polymerase II of Drosophila. Relation of its 140,000 Mr subunit to the β subunit of Escherichia coli RNA polymerase. J Mol Biol 195:929–937

    Google Scholar 

  • Fritzsche E (1988) Untersuchungen zur molekularen Feinstruktur plastidärer DNA: Alkalilabile Stellen, replikative Intermediate. Kaliumpermanganat als Agens zur Identifizierung von 5-Methylcytosinpositionen. Dissertation, Albert-Ludwigs-Universität Freiburg, FRG

    Google Scholar 

  • Fukuda R, Ishihama A (1974) Subunits of RNA polymerase in function and structure. V. Maturation in vitro of core enzyme from Escherichia coli. J Mol Biol 87:523–540

    Google Scholar 

  • Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120:97–120

    Google Scholar 

  • Glass RE, Jones ST, Nene V, Nomura T, Fujita N, Ishihama A (1986) Genetic studies on the β subunit of Escherichia coli RNA polymerase VIII. Localisation of a region involved in promoter selectivity. Mol Gen Genet 203:487–491

    Google Scholar 

  • Gray MW (1989) The evolutionary origins of organelles. Trends Genet 5:294–299

    Google Scholar 

  • Hartmann GR, Biebricher C, Glaser SJ, Grosse F, Katzameyer MJ, Lindner AJ, Mosig H, Nasheuer H-P, Rothman-Denes LB, Schäffner AR, Schneider GJ, Stetter K-O, Thomm M (1988) Initiation of transcription — a general tool for affinity labeling of RNA polymerases by autocatalysis. Biol Chem Hoppe-Seyler 369:775–788

    Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194

    Google Scholar 

  • Hudson GS, Holton TA, Whitfeld PR, Bottomley W (1988) Spinach chloroplast rpoBC genes encode three subunits of the chloroplast RNA polymerase. J Mol Biol 200:639–654

    Google Scholar 

  • Igloi GL, Dory I, Kössel H (1990) Nucleic Acids Res 18:683

    Google Scholar 

  • Jin DJ, Gross CA (1988) Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202:45–58

    Google Scholar 

  • Jin DJ, Gross CA (1989) Characterization of the pleiotropic phenotypes of rifampicin-resistant rpoB mutants of Escherichia coli. J Bacteriol 171:5229–5231

    Google Scholar 

  • Jokerst RS, Weeks JR, Zehring WA, Greenleaf AL (1989) Analysis of the gene encoding the largest subunit of RNA polymerase II in Drosophila. Mol Gen Genet 215:266–275

    Google Scholar 

  • Kidd GH, Bogorad L (1980) A facile procedure for purifying maize chloroplast RNA polymerase from whole cell homogenates. Biochim Biophys Acta 609:14–30

    Google Scholar 

  • Klug A, Rhodes D (1987) ‘Zinc fingers’: a novel protein motif for nucleic acid recognition. TIBS 12:464–469

    Google Scholar 

  • Kossel H, Igloi GL, Meinke A, Ruf M (1989) Structure and expression of genes coding for RNA polymerase subunits from maize chloroplasts. In: Galling G (ed) Proceedings of the Braunschweig Symposium on Applied Plant Molecular Biology. Technischen Universität Braunschweig, FRG, pp 91–97

    Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764

    Google Scholar 

  • Leffers H, Gropp F, Lottspeich F, Zillig W, Garrett RA (1989) Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae. J Mol Biol 206:1–17

    Google Scholar 

  • Lisitsyn NA, Monastyrskaya GS, Sverdlov ED (1988) Genes coding for RNA polymerase β subunit in bacteria. Structure/function analysis. Eur J Biochem 177:363–369

    Google Scholar 

  • Little MC, Hallick RB (1988) Chloroplast rpoA, rpoB and rpoC genes specify at least three components of a chloroplast DNA-dependent RNA polymerase active in tRNA and mRNA transcription. J Biol Chem 263:14302–14307

    Google Scholar 

  • Meinke A, Igloi GL, Kössel H (1988) Nucleotide sequence of tDNA(Cys)GCA and its flanking regions from Zea mays chloroplasts. Nucleic Acids Res 16:5696

    Google Scholar 

  • Merrill BM, Stone KL, Cobianchi F, Wilson SH, Williams KR (1988) Phenylalanines that are conserved among several RNA-binding proteins form part of a nucleic acid-binding pocket in the A1 heterogeneous nuclear ribonucleoprotein. J Biol Chem 263:3307–3313

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Google Scholar 

  • Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz TA (1985a) Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313:762–766

    Google Scholar 

  • Ollis DL, Kline C, Steitz TA (1985b) Domain of E. coli DNA polymerase showing sequence homology to T7 DNA polymerase. Nature 313:818–819

    Google Scholar 

  • Ovchinnikov YA, Monastyrskaya GS, Gubanov VV, Guryev SO, Chertov OY, Modyanov NN, Grinkevich VA, Makarova IA, Marchenko TV, Polovnikova IN, Lipkin VM, Sverdlov ED (1981) The primary structure of Escherichia coli RNA polymerase. Nucleotide sequence of the rpoB gene and amino acid sequence of the β-subunit. Eur J Biochem 116: 621–629

    Google Scholar 

  • Ovchinnikov YA, Monastyrskaya GS, Gubanov VV, Guryev SO, Salomatina IS, Shuvaeva TM, Lipkin VM, Sverdlov ED (1982) The primary structure of E. coli RNA polymerase. Nucleotide sequence of the rpoC gene and amino acid sequence of the β′-subunit. Nucleic Acids Res 10:4035–4044

    Google Scholar 

  • Pai EF, Sachsenheimer W, Schirmer RH, Schultz GE (1977) Substrate position and induced-fit in crystalline adenylate kinase. J Mol Biol 114:37–45

    Google Scholar 

  • Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet 19:325–354

    Google Scholar 

  • Ptashne M (1988) How eukaryotic transcriptional activators work. Nature 335:683–689

    Google Scholar 

  • Pühler G, Lottspeich F, Zillig W (1989) Organization and nucleotide sequence of the genes encoding the large subunits A, B and C of the DNA-dependent RNA polymerase of the archaebacterium Sulfolobus acidocaldarius. Nucleic Acids Res 17:4517–1534

    Google Scholar 

  • Purton S, Gray JC (1989) The plastid rpoA gene encoding a protein homologous to the bacterial RNA polymerase alpha subunit is expressed in pea chloroplasts. Mol Gen Genet 217:77–84

    Google Scholar 

  • Rodermel S, Bogorad L (1988) Genetic map of the Zea mays plastid chromosome. Maize Genet Coop Newslett 62:148–149

    Google Scholar 

  • Rozen F, Pelletier J, Trachsel H, Sonenberg N (1989) A lysine substitution in the ATP-binding site of eucaryotic initiation factor 4A abrogates nucleotide-binding activity. Mol Cell Biol 9:4061–4063

    Google Scholar 

  • Ruf M, Kossel H (1988) Structure and expression of the gene coding for the α-subunit of DNA-dependent RNA polymerase from the chloroplast genome of Zea mays. Nucleic Acids Res 16:5741–5754

    Google Scholar 

  • Schwemmle M, Gorlach M, Bader M, Sarre TF, Hilse K (1989) Binding of mRNA by an oligopeptide containing an evolutionarily conserved sequence from RNA binding proteins. FEBS Lett 251:117–120

    Google Scholar 

  • Shamoo Y, Ghosaini LR, Keating KM, Williams KR, Sturtevant JM, Konigsberg WH (1989) Site-specific mutagenesis of T4 gene 32: The role of tyrosine residues in protein-nucleic acid interactions. Biochemistry 28:7409–7417

    Google Scholar 

  • Shimada H, Fukata M, Ishikawa M, Sugiura M (1990) Rice chloroplast RNA polymerase genes: the absence of an intron in rpoC1 and the presence of an extra sequence in rpoC2. Mol Gen Genet 221:395–402

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    CAS  Google Scholar 

  • Sigler PB (1988) Transcriptional activation. Acid blobs and negative noodles. Nature 333:210–212

    Google Scholar 

  • Struhl K (1989) Helix-turn-helix, zinc-finger and leucine-zipper motifs for eukaryotic transcriptional regulatory proteins. TIBS 14:137–140

    Google Scholar 

  • Sweetser D, Nonet M, Young RA (1987) Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. Proc Natl Acad Sci USA 84:1192–1196

    Google Scholar 

  • Wilson DW, Meacock PA (1988) Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure. Nucleic Acids Res 16:8097–8112

    CAS  PubMed  Google Scholar 

  • Wooley P, Clark BFC (1989) Homologies in the structures of G-binding proteins: An analysis based on elongation factor EF-Tu. Bio/technology 7:913–920

    Google Scholar 

  • Xie W-Q, Jäger K, Potts M (1989) Cyanobacterial RNA polymerase genes rpoC1 and rpoC2 correspond to rpoC of Escherichia coli. J Bacteriol 171:1967–1973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Hagemann

The sequence data presented in this paper will appear in the EMBL/Gen Bank/DDBJ Nucleotide Databases under the accession number X17318

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igloi, G.L., Meinke, A., Döry, I. et al. Nucleotide sequence of the maize chloroplast rpo B/C1/C2 operon: Comparison between the derived protein primary structures from various organisms with respect to functional domains. Mol Gen Genet 221, 379–394 (1990). https://doi.org/10.1007/BF00259403

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00259403

Key words

Navigation