Skip to main content
Log in

Involvement of exopeptidases in dehydration tolerance of spring wheat seedlings

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The observed inability of 6-d-old seedlings of spring wheat (Triticum aestivum L.) to tolerate the same water deficit as compared to the 4-d-old seedlings seems to be associated with the higher carboxypeptidase and lower aminopeptidase activities. Free amino acid pools differentiated also the 4-d-old seedlings from the older ones. Dehydration decreased the amino acid content in 4-d-old seedlings, increased it in 6-d-old seedlings and changed composition of amino acid pool. In tolerant phase of wheat seedling growth carboxypeptidase activity increased in response to water deficit and aminopeptidase activity increased in dehydrated seedlings, independently of their age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ala:

alanine

Arg:

arginine

Asn:

asparagine

Asp:

aspartic acid

β-NA:

β-naphthylamide

Cys:

cysteine

DMSO:

dimethyl sulfoxide

EDTA:

ethylendiaminetetraacetic acid disodium salt

E64:

(2S,3S)-3-(N-{(S)-1-[N-(4-guanidinobutyl)carbamoyl]3-methylbutyl}carbamoyl)oxirane-2-carboxylic acid

HPLC:

high pressure liquid chromatography

Gly:

glycine

Gln:

glutamic acid

Glu:

glutamine

Ile:

isoleucine

Leu:

leucine

Lys:

lysine

Met:

methionine

PAGE:

polyacrylamide gel electrophoresis

Phe:

phenylalanine

pCMB:

p-chloromercuribenzoate

PMSF:

phenylmethylsulfonyl fluoride

Pro:

proline

PVP:

polyvinylpolypyrrolidone

RWC:

relative water content

Ser:

serine

Thr:

threonine

TNBS:

trinitrobenzene sulfonate

Trp:

tryptophan

Tyr:

tyrosine

Val:

valine

References

  • Bartling, D., Nosek, J.: Molecular and immunological characterization of leucine aminopeptidase in Arabidopsis thaliana: a new antibody suggests a semi-constitutive regulation of a phylogenetically old enzyme.-Plant Sci 9: 199–209, 1994.

    Article  Google Scholar 

  • Beers, E.P., Jones, A.M., Dickerman, A.W.: The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis.-Phytochemistry 65: 43–58, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Blum, A., Sinmena, B., Ziv, O.: An evaluation of seed and seedling drought tolerance screening test in wheat.-Euphytica 29: 727–36, 1980.

    Article  Google Scholar 

  • Bogdan, J., Zagdańska, B.: Drought resistance of spring wheat during germination and seedling growth.-Bull. IHAR 233: 73–80, 2004.

    Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Bray, E.A.: Plant responses to water deficit.-Trends Plant Sci. 2: 48–54, 1997.

    Article  Google Scholar 

  • Callis, J.: Regulation of protein degradation.-Plant Cell 7: 845–57, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Carrasco, P., Carbonell, J.: Changes in the level of peptidase activities in pea ovaries during senescence and fruit set induced by gibberellic acid.-Plant Physiol. 92: 1070–1074, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Cercós, M., Urbez, C., Carbonell, J.: A serine carboxypeptidase gene (PsCP), expressed in early stages of reproductive and vegetative development in Pisum sativum, is induced by gibberellins.-Plant mol. Biol. 51: 165–174, 2003.

    Article  PubMed  Google Scholar 

  • Chao, W.S., Gu, Y.-Q., Pautot, V., Bray, E.A., Walling, L.L.: Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals-systemin, methyl jasmonate, and abscisic acid.-Plant Physiol. 120: 979–992, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Cherian, S., Reddy, M.P., Ferreira, R.B.: Transgenic plants with improved dehydration-stress tolerance: progress and future prospects.-Biol. Plant. 50: 481–495, 2006.

    Article  CAS  Google Scholar 

  • Cruz de Carvalho, M.H., d’Arcy-Lameta, A., Roy-Macauley, H., Gareil, M., El Maarouf, H., Pham Thi, A.T., Zuily-Fodil, Y.: Aspartic protease in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L. Walp): enzymatic activity, gene expression and relation to drought susceptibility.-FEBS Lett. 492: 242–246, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Dominguez, F., Cejudo, F.J. Germination-related genes encoding proteolytic enzymes are expressed in the nucellus of developing wheat grains.-Plant J. 15: 569–574, 1998.

    Article  CAS  Google Scholar 

  • Dominguez, F., Gonzalez, M.C., Cejudo, F.J.: A germination-related gene encoding a serine carboxypeptidase is expressed during the differentiation of the vascular tissue in wheat grains and seedlings.-Planta 215: 727–734, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Dubey, R.S., Rani, M.: Influence of NaCl salinity on the behavior of protease, aminopeptidase and carboxypeptidase in rice seedlings in relation to salt tolerance.-Aust. J. Plant Physiol. 30: 133–145, 1990.

    Google Scholar 

  • El-Amrani, A., Suire, C., Camara, B., Gaudillère, J.-P., Couée, I.: Purification and characterization of a novel aminopeptidase, plastidial alanine-aminopeptidase, from the cotyledons of etiolated sugar beet seedlings.-Plant Physiol. 109: 87–94, 1995.

    CAS  Google Scholar 

  • Farrant, J.M., Bailly, C., Leymarie, J., Hamman, B., Ccme, D., Corbineau, F.: Wheat seedlings as a model to understand desiccation tolerance and sensitivity.-Physiol. Plant. 120: 563–574, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Feller, U.K., Soong, T.-T., Hageman, R.H.: Patterns of proteolytic enzyme activities in different tissues of germinating corn (Zea mays L.).-Planta 140: 155–162, 1978.

    Article  CAS  Google Scholar 

  • Foyer, C., Valadier, M.-H., Migge, A., Becker, T.W.: Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves.-Plant Physiol. 117: 283–292, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Grudkowska, M., Zagdańska, B.: Multifunctional role of plant cysteine proteinases.-Acta Biochim. Polon. 51: 609–624, 2004.

    PubMed  CAS  Google Scholar 

  • Guerida, M., Shroyer, J.P., Kirkham, M.B., Paulsen, G.M.: Wheat coleoptile and root growth and seedling survival after dehydration and rehydration.-Agron. J. 89: 822–826, 1997.

    Article  Google Scholar 

  • Guerrero, F.D., Jones, J.T., Mullet, J.E.: Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted and expression of three inducible genes.-Plant mol. Biol. 15: 11–26, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Hieng, B., Ugrinović, K., Šuštar-Vozlič, J., Kidrič, M.: Different classes of proteases are involved in the response to drought of Phaseolus vulgaris L. cultivars differing in sensitivity.-J Plant Physiol. 161: 519–530, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hildmann, T., Ebneth, M., Pena-Cortes, H., Sanchez-Serrano, J.J., Willmitzer, L., Prat, S.: General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding.-Plant Cell 4: 1157–1170, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Ingram, J., Bartels, D.: The molecular basis of dehydration tolerance in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 377–403, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kolehmainen, L., Mikola, J.: Partial purification and enzymatic properties of an aminopeptidase from barley.-Arch. Biochem. Biophys. 145: 633–642, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head bacteriophage T4.-Nature 227: 680–685, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Mehta, R.A., Warmbardt, R.D., Mattoo, A.K.: Tomato fruit carboxypeptidase. Properties, induction upon wounding, and immunocytochemical localization.-Plant Physiol. 110: 883–892, 1996.

    PubMed  CAS  Google Scholar 

  • Miazek, A., Bogdan, J., Zagdańska, B.: Effect of water deficit during germination of wheat seeds.-Biol. Plant. 44: 397–403, 2001.

    Article  Google Scholar 

  • Li, J., Lease, K.A., Tax, F.E., Walker, J.C. BRS1, a serine carboxypeptidase, regulates BRII signaling in Arabidopsis.-Proc. nat. Acad. Sci USA 98: 5916–5921, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Mikola, J., Kolehmainen, L: Localization of activity of various peptidases in germinating barley.-Planta 104: 167–177, 1972.

    Article  CAS  Google Scholar 

  • Mikola, L., Mikola, J.: Occurrence and properties of different types of peptidases in higher plants.-In: Dalling, M.J. (ed.): Plant Proteolytic Enzymes. Vol. 1. Pp. 97–117. CRC Press, Boca Raton 1986.

    Google Scholar 

  • Navari-Izzo, F., Quartacci, M.F., Izzo, R.: Water-stress induced changes in protein and free amino acids in field-grown maize and sunflower.-Plant Physiol. Biochem. 28: 531–537, 1990.

    CAS  Google Scholar 

  • Ogiwara, N., Amano, T., Satoh, M., Shioi, Y.: Leucine aminopeptidase from etiolated barley seedlings: characterization and partial purification of isoforms.-Plant Sci 168: 575–581, 2005.

    Article  CAS  Google Scholar 

  • Palma, J.M., Sandalio, L.M., Corpas, F.J., Romero-Puertas, M.C., McCarthy, I., Del Rio, L.A.: Plant proteases, protein degradation, and oxidative stress: role of peroxisomes.-Plant Physiol. Biochem. 40: 521–30, 2002.

    Article  CAS  Google Scholar 

  • Parrott, D., Yang, L., Shama, L., Fischer, A.M.: Senescence is accelerated, and several proteases are induced by carbon “feast” conditions in barley (Hordeum vulgare L.) leaves.-Planta 222: 989–1000, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Zavala, B., Mercado-Flores, Y., Hernandez-Rodriguez, C., Villa-Tanaca, L.: Purification and characterization of a serine carboxypeptidase from Kluyveromycetes marxianus.-Int. J. Food Microbiol. 91: 245–252, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Roy-Macauley, H., Zuily-Fodil, Y., Kidrič, M., Pham Thi, A.T., Veira da Silva, J.: Effect of drought stress on proteolytic activities in Phaseolus and Vigna leaves from sensitive and resistant plants.-Physiol. Plant. 85: 90–96, 1992.

    Article  CAS  Google Scholar 

  • Schaffer, M.A., Fischer, R.L.: Analysis of mRNA that accumulates in response to low temperature identifies a thiol protease gene in tomato.-Plant Physiol. 87: 431–436, 1988.

    PubMed  CAS  Google Scholar 

  • Schaffer, M.A., Fischer, R.L.: Transcriptional activation by heat and cold of a thiol protease gene in tomato.-Plant Physiol. 93: 1486–1492, 1990.

    PubMed  CAS  Google Scholar 

  • Schaller, A., Ryan, C.A.: Systemin: a polypeptide defense signal in plants.-BioEssays 18: 27–33, 1995.

    Article  Google Scholar 

  • Schaller, A.: A cut above the rest: the regulatory function of plant proteases.-Planta 220: 183–197, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Simon-Sarkadi, I., Kocsy, G., Varhegyi, A., Galiba, G., De Ronde, J.A.: Stress-induced changes in the free amino acid composition in transgenic soybean plants having increased proline content.-Biol. Plant. 50: 793–796, 2006.

    Article  CAS  Google Scholar 

  • Thayer, S.S., Choe, H.T., Rausser, S., Huffaker, R.C.: Characterization and subcellular localization of aminopeptidases in senescing barley leaves.-Plant Physiol. 87: 894–897, 1988.

    PubMed  CAS  Google Scholar 

  • Tonecki, J., Gorin, N., Verghagen, W.: Quantitative high-performance liquid chromatography and enzymatic estimation of four free amino acids in powders of anthers from bulbs of tulip.-J. Liquid Chrom. 12: 2321–2331, 1989.

    CAS  Google Scholar 

  • Varshavsky, A.: The N-end rule: functions, mysteries, uses.-Proc. nat. Acad. Sci USA 93: 12142–12149, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Vierstra, R.D.: Proteolysis in plants: mechanisms and functions.-Plant mol. Biol. 32: 275–302, 2004.

    Article  Google Scholar 

  • Vincent, J.L., Brewin, N.J.: Immunolocalization of a cysteine protease in vacuoles, vesicles and symbiosomes of pea nodule cells.-Plant Physiol. 123: 521–530, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Vodkin, L., Scandalios, J.G.: Comparative properties of genetically defined peptidases in maize.-Biochemistry 19: 4660–4667, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Walling, L.L.: Recycling or regulation? The role of amino-terminal modifying enzyme.-Curr. Opin. Plant Biol. 9: 227–233, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, K.A.: Role of proteolytic enzymes in the mobilization of protein reserves in the germinating dicot seed.-In: Dalling, M.J. (ed.): Plant Proteolytic Enzymes. CRC Press, Boca Raton 1986.

    Google Scholar 

  • Wiśniewski, K., Zagdańska, B.: Genotype-dependent proteolytic response of spring wheat to water deficiency.-J. exp. Bot. 52: 1455–66, 2001.

    Article  PubMed  Google Scholar 

  • Zagdańska, B., Neumann, M.: Amino acids changes in drought-affected spring wheat.-Bull. Pol. Acad. Sci. 32: 229–235, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zagdańska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miazek, A., Zagdańska, B. Involvement of exopeptidases in dehydration tolerance of spring wheat seedlings. Biol Plant 52, 687–694 (2008). https://doi.org/10.1007/s10535-008-0133-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-008-0133-1

Additional key words

Navigation