Skip to main content
Log in

Cyanobacteria in hypersaline environments: biodiversity and physiological properties

  • Review Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Within the cyanobacterial world there are many species adapted to life in hypersaline environments. Some can even grow at salt concentrations approaching NaCl saturation. Halophilic cyanobacteria often form dense mats in salt lakes, and on the bottom of solar saltern ponds, hypersaline lagoons, and saline sulfur springs, and they may be found in evaporite crusts of gypsum and halite. A wide range of species were reported to live at high salinities. These include unicellular types (Aphanothece halophytica and similar morphotypes described as Euhalothece and Halothece), as well as non-heterocystous filamentous species (Coleofasciculus chthonoplastes, species of Phormidium, Halospirulina tapeticola, Halomicronema excentricum, and others). Cyanobacterial diversity in high-salt environments has been explored using both classic, morphology-based taxonomy and molecular, small subunit rRNA sequence-based techniques. This paper reviews the diversity of the cyanobacterial communities in hypersaline environments worldwide, as well as the physiological adaptations that enable these cyanobacteria to grow at high salt concentrations. To withstand the high osmotic pressure of their surrounding medium, halophilic cyanobacteria accumulate organic solutes: glycine betaine is the preferred solute in the most salt-tolerant types; Coleofasciculus produces the heteroside glucosylglycerol, and the less salt-tolerant cyanobacteria generally accumulate the disaccharides sucrose and trehalose under salt stress. Some cyanobacteria growing in benthic mats in hypersaline environments are adapted to life under anoxic conditions and they can use sulfide as an alternative electron donor in an anoxygenic type of photosynthesis through a process which involves photosystem I only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abed RMM, Garcia-Pichel F, Hernández-Mariné M (2002) Polyphasic characterization of benthic, moderately halophilic, moderately thermophilic cyanobacteria with very thin trichomes and the proposal of Halomicronema excentricum gen. nov., sp. nov. Arch Microbiol 177:361–370

    Article  CAS  PubMed  Google Scholar 

  • Abed RMM, Kohls K, Schoon R, Scherf A-K, Schacht M, Palinska KA, Al-Hassani H, Hamza W, Rullkötter J, Golubic S (2008) Lipid biomarkers, pigments and cyanobacterial diversity of microbial mats across intertidal flats of the arid coast of the Arabian Gulf (Abu Dhabi, UAE). FEMS Microbiol Ecol 65:449–462

    Article  CAS  PubMed  Google Scholar 

  • Allen MA, Goh F, Burns BP, Neilan BA (2009) Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology 7:82–96

    Article  CAS  PubMed  Google Scholar 

  • Anagnostidis K (2001) Nomenclatural changes in cyanoporkaryotic order Oscillatoriales. Preslia 73:359–375

    Google Scholar 

  • Anderson GC (1958) Some limnological features of a shallow saline meromictic lake. Limnol Oceanogr 3:259–270

    Article  Google Scholar 

  • Bebout BM, Carpenter SP, Des Marais DJ, Discipulo M, Embaye T, Garcia-Pichel F, Hoehler TM, Hogan M, Jahnke LL, Keller RM, Miller SR, Prufert-Bebout LE, Raleigh C, Rothrock M, Turk K (2002) Long-term manipulations of intact microbial mat communities in a greenhouse collaboratory: simulating Earth’s present and past field environments. Astrobiology 2:383–402

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis H, Severin I, Confurius-Guns V, Wollenzien UIA, Stal LJ (2010) Horizontal transfer of the nitrogen fixation gene clusters in the cyanobacterium Microcoleus chthonoplastes. ISME J 4:121–130

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka LJ, Demmerle S, Mackay MA, Norton RS (1980) Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga. Science 210:650–651

    Article  CAS  PubMed  Google Scholar 

  • Brock TD (1976) Halophilic blue-green algae. Arch Microbiol 107:109–111

    Article  CAS  PubMed  Google Scholar 

  • Budinoff CR, Hollibaugh JT (2007) Ecophysiology of a mono lake picocyanobacterium. Limnol Oceanogr 52:2484–2495

    Article  CAS  Google Scholar 

  • Campbell SE, Golubic S (1985) Benthic cyanophytes (cyanobacteria) of Solar Lake (Sinai). Arch Hydrobiol 38/39(Suppl 71):311–329

    Google Scholar 

  • Caumette P, Matheron R, Raymond N, Relexans J-C (1994) Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiol Ecol 13:273–286

    Article  CAS  Google Scholar 

  • Cohen Y (1984) The Solar Lake cyanobacterial mats: strategies of photosynthetic life under sulfide. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: stromatolites. Alan R Liss, New York, pp 133–148

    Google Scholar 

  • Cohen Y, Jørgensen BB, Padan E, Shilo M (1975a) Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257:489–492

    Article  CAS  Google Scholar 

  • Cohen Y, Padan E, Shilo M (1975b) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 123:855–861

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen Y, Jørgensen BB, Revsbech NP, Poplawski R (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl Environ Microbiol 51:398–407

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cornée A, Dickman M, Busson G (1992) Laminated cyanobacterial mats in sediments of solar salt works: some sedimentological implications. Sedimentology 39:599–612

    Article  Google Scholar 

  • Cumbers J, Rothschild LJ (2014) Salt tolerance and polyphyly in the cyanobacterium Chroococcidiopsis (Pleurocapsales). J Phycol 50:472–482

    Article  CAS  Google Scholar 

  • Davis JS (1993) Biological management for problem solving and biological concepts for a new generation of solar saltworks. In: Kakihana H, Hardy HR Jr, Hoshi T, Toyokura K (eds) Proceedings of the seventh symposium on salt, vol 1. Elsevier Science Publishers, Amsterdam, pp 611–616

    Google Scholar 

  • Davis JS, Giordano M (1996) Biological and physical events involved in the origin, effects, and control of organic matter in solar saltworks. Int J Salt Lake Res 4:335–347

    Article  Google Scholar 

  • de los Rios A, Valea S, Ascaso C, Davila A, Kastovsky J, McKay CP, Gomez-Silva B, Wierzchos J (2010) Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. Int Microbiol 13:79–89

    PubMed  Google Scholar 

  • De Philippis R, Margheri MC, Pelosi E, Ventura S (1993) Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. J Appl Phycol 5:387–394

    Article  Google Scholar 

  • De Philippis R, Margheri MC, Materassi R, Vincenzini M (1998) Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Appl Environ Microbiol 64:1130–1132

    PubMed Central  PubMed  Google Scholar 

  • de Wit R, van Boekel WHM, van Gemerden H (1988) Growth of the cyanobacterium Microcoleus chthonoplastes on sulfide. FEMS Microbiol Ecol 53:203–209

    Article  Google Scholar 

  • de Wit R, Falcón LI, Carpy-Roubaud C (2005) Heterotrophic dinitrogen fixation (acetylene reduction) in phosphate-fertilised Microcoleus chthonoplastes microbial mat from the hypersaline inland lake ‘la Salada de Chiprana’ (NE Spain). Hydrobiologia 534:245–253

    Article  Google Scholar 

  • Des Marais DJ (1995) The biogeochemistry of hypersaline microbial mats. In: Jones JG (ed) Advances in microbial ecology, vol 14. Plenum Press, New York, pp 251–274

    Chapter  Google Scholar 

  • Fourçans A, Garcia de Oteyza T, Wieland A, Sole A, Diestra E, van Bleijswijk J, Grimalt JO, Kühl M, Esteve I, Muyzer G, Caumette P, Duran R (2004) Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). FEMS Microbiol Ecol 51:55–70

    Article  PubMed  Google Scholar 

  • Fourçans A, Solé A, Dienstra E, Ranchou-Peyruse A, Esteve I, Caumette P, Duran R (2006) Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue, France). FEMS Microb Ecol 57:367–377

    Article  Google Scholar 

  • Garcia-Pichel F, Prufert-Bebout L, Muyzer G (1996) Phenotypic and phylogenetic analysis show Microcoleus chthonoplastes to be a cosmopolitic cyanobacterium. Appl Environ Microbiol 62:3284–3291

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Nübel U, Muyzer G (1998) The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch Microbiol 169:469–482

    Article  CAS  PubMed  Google Scholar 

  • Garlick S, Oren A, Padan E (1977) Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J Bacteriol 129:623–629

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goh F, Barow KD, Burns BP, Neilan BA (2010) Identification and regulation of novel compatible solutes from hypersaline stromatolite-associated cyanobacteria. Arch Microbiol 192:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Golubic S (1980) Halophily and halotolerance in cyanophytes. Origins Life 10:169–183

    Article  CAS  Google Scholar 

  • Green SJ, Blackford C, Bucki P, Jahnke LL (2008) A salinity and sulfate manipulation of hypersaline microbial mats reveals stasis in the cyanobacterial community structure. ISME J 2:457–470

    Article  CAS  PubMed  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  CAS  PubMed  Google Scholar 

  • Hagemann M (2013) Genomics of salt acclimation: synthesis of compatible solutes among cyanobacteria. Adv Bot Res 65:27–55

    Article  CAS  Google Scholar 

  • Hof T, Frémy P (1933) On Myxophyceae living in strong brines. Rec Trav Bot Néerl 30:140–162

    Google Scholar 

  • Ionescu D, Lipski A, Altendorf K, Oren A (2007) Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis. Hydrobiologia 576:15–26

    Article  CAS  Google Scholar 

  • Javor BJ (2002) Industrial microbiology of solar salt production. J Ind Microbiol Biotechnol 28:42–47

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnol Oceanogr 28:1075–1093

    Article  Google Scholar 

  • Joset P, Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering of molecular events. Physiol Plant 96:738–744

    Article  CAS  Google Scholar 

  • Karsten U (1996) Growth and organic osmolytes of geographically different isolates of Microcoleus chthonoplastes (Cyanobacteria) from benthic microbial mats: response to salinity change. Phycology 32:501–506

    Article  CAS  Google Scholar 

  • Karsten U, Garcia-Pichel F (1996) Carotenoids and mycosporine-like amino acid compounds in members of the genus Microcoleus (Cyanobacteria): a chemosystematic study. Syst Appl Microbiol 19:285–294

    Article  Google Scholar 

  • Kedar L, Kashman Y, Oren A (2002) Mycosporine-2-glycine is the major mycosporine-like amino acid in a unicellular cyanobacterium (Euhalothece sp.) isolated from a gypsum crust in a hypersaline saltern pond. FEMS Microbiol Lett 208:233–237

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood AE, Buchheim JA, Buchheim MA, Henley WJ (2008) Cyanobacterial diversity and halotolerance in a variable hypersaline environment. Microb Ecol 55:453–465

    Article  PubMed  Google Scholar 

  • Klähn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13:551–562

    Article  PubMed  Google Scholar 

  • Klähn S, Steglich C, Hess WR, Hagemann M (2010) Glucosylglycerate: a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments. Environ Microbiol 12:83–94

    Article  PubMed  Google Scholar 

  • Kohls K, Abed RMM, Polerecky L, Weber M, de Beer D (2010) Halotaxis of cyanobacteria in an intertidal hypersaline microbial mat. Environ Microbiol 12:567–575

    Article  CAS  PubMed  Google Scholar 

  • Krumbein WE, Cohen Y, Shilo M (1977) Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnol Oceanogr 22:635–656

    Article  CAS  Google Scholar 

  • Lee JZ, Burow LC, Woebken D, Everroad RC, Kubo MD, Spormann AM, Weber PK, Pett-Ridge J, Bebout BM, Hoehler TM (2014) Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats. Frontiers Microbiol 5:61

    Google Scholar 

  • Lindemann SR, Moran JJ, Stegen JC, Renslow RS, Hutchison JR, Cole JK, Dohnalkova AC, Tramblay J, Singh K, Malfatti SA, Chen F, Tringe SG, Beyenal H, Fredrickson JK (2013) The epsomitic phototrophic microbial mat of Hot Lake, Washington: community structural responses to seasonal cycling. Frontiers Microbiol 4:323

    Article  Google Scholar 

  • Mackay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191

    CAS  Google Scholar 

  • Margheri MC, Tredici MR, Barsanti L, Balloni W (1987) The photosynthetic community of the Trapani saline lagoons: an alternative option for the exploitation of an extreme environment. Ann Microbiol 37:203–215

    CAS  Google Scholar 

  • Margheri MC, Bosco M, Giovannetti L, Ventura S (1999) Assessment of the genetic diversity of halotolerant coccoid cyanobacteria using amplified 16S rDNA restriction analysis. FEMS Microbiol Lett 173:9–16

    Article  CAS  Google Scholar 

  • Margheri MC, Ventura S, Kaštovský J, Komárek J (2008) The taxonomic validation of the cyanobacterial genus Halothece. Phycologia 47:477–486

    Article  Google Scholar 

  • Moezelaar R, Bijvank SM, Stal LJ (1996) Fermentation and sulfur reduction in the mat building cyanobacterium Microcoleus chthonoplastes. Appl Environ Microbiol 62:1752–1758

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nübel U, Garcia-Pichel F, Kühl M, Muyzer G (1999) Spatial scale and the diversity of benthic cyanobacteria and diatoms in a salina. Hydrobiologia 401:199–206

    Article  Google Scholar 

  • Nübel U, Garcia-Pichel F, Clavero E, Muyzer G (2000a) Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ Microbiol 2:217–226

    Article  PubMed  Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (2000b) The halotolerance and phylogeny of cyanobacteria with tightly coiled trichomes (Spirulina Turpin) and the description of Halospirulina tapeticola gen. nov., sp. nov. Int J Syst Evol Microbiol 50:1265–1277

    Article  PubMed  Google Scholar 

  • Oren A (1989) Photosynthetic and heterotrophic benthic bacterial communities of a hypersaline sulfur spring on the shore of the Dead Sea (Hamei Mazor). In: Cohen Y, Rosenberg E (eds) Microbial mats: Physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC, pp 64–76

    Google Scholar 

  • Oren A (1997) Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol J 14:233–242

    Article  Google Scholar 

  • Oren A (2006) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 2. Springer, New York, pp 263–282

    Google Scholar 

  • Oren A (2012) Salts and brines. In: Whitton BA (ed) Ecology of cyanobacteria II. Their diversity in time and space, 2nd edn. Springer, Dordrecht, pp 401–426

    Chapter  Google Scholar 

  • Oren A, Shilo M (1979) Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Arch Microbiol 122:77–84

    Article  CAS  Google Scholar 

  • Oren A, Kühl M, Karsten U (1995) An endevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar Ecol Prog Ser 128:151–159

    Article  Google Scholar 

  • Oren A, Sørensen KB, Canfield DE, Teske AP, Ionescu D, Lipski A, Altendorf K (2009) Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626:15–26

    Article  CAS  Google Scholar 

  • Padan E (1979a) Facultative anoxygenic photosynthesis in cyanobacteria. Annu Rev Plant Physiol 30:27–40

    Article  CAS  Google Scholar 

  • Padan E (1979b) Impact of facultatively anaerobic photoautotrophic metabolism on ecology of cyanobacteria (blue-green algae). In: Alexander M (ed) Advances in microbial ecology, vol 3. Plenum Publishing Corporation, New York, pp 1–48

    Chapter  Google Scholar 

  • Paerl HW, Pinckney JL, Steppe TF (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2:11–26

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Steppe TF, Buchan KC, Potts M (2003) Hypersaline cyanobacterial mats as indicators of elevated tropical hurricane activity and associated climate change. Ambio 32:87–90

    PubMed  Google Scholar 

  • Reed RH, Chudek JA, Foster R, Stewart WDP (1984) Osmotic adjustment in cyanobacteria from hypersaline environments. Arch Microbiol 138:333–337

    Article  CAS  Google Scholar 

  • Řeháková K, Zapomělová E, Prášil O, Veselá J, Medová H, Oren A (2009) Composition changes of phototrophic microbial communities along the salinity gradient in the solar saltern evaporation ponds of Eilat, Israel. Hydrobiologia 636:77–88

    Article  Google Scholar 

  • Roney HC, Booth GM, Cox PA (2009) Competitive exclusion of cyanobacterial species in the Great Salt Lake. Extremophiles 13:355–361

    Article  PubMed  Google Scholar 

  • Rothschild LJ, Giver LJ, White MR, Mancinelli RL (1994) Metabolic activity of microorganisms in evaporites. J Phycol 30:431–438

    Article  CAS  PubMed  Google Scholar 

  • Schneider D, Arp G, Reimer A, Reitner J, Daniel R (2013) Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati Atoll, Central Pacific. PLoS One 8:e66662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siegesmund MA, Johansen JR, Karsten U, Friedl T (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44:1572–1585

    Article  Google Scholar 

  • Sørensen K, Řeháková K, Zapomělová E, Oren A (2009) Distribution of benthic phototrophs, sulfate reducers, and methanogens in two adjacent salt ponds in Eilat, Israel. Aquat Microbiol Ecol 56:275–284

    Article  Google Scholar 

  • van Rijn J, Cohen Y (1983) Ecophysiology of the cyanobacterium Dactylococcopsis salina: effect of light intensity, sulphide and temperature. J Gen Microbiol 129:1849–1856

    Google Scholar 

  • Volkmann M, Gorbushina AA, Kedar L, Oren A (2006) The structure of euhalothece-362, a novel red-shifted mycosporine-like amino acid, from a halophilic cyanobacterium (Euhalothece sp.). FEMS Microbiol Lett 258:50–54

    Article  CAS  PubMed  Google Scholar 

  • Walsby AE, van Rijn J, Cohen Y (1983) The biology of a new gas-vacuolate cyanobacterium, Dactylococcopsis salina sp. nov., in Solar Lake. Proc Roy Soc Lond B 217:417–447

    Article  Google Scholar 

  • Wieland A, Kühl M (2006) Regulation of photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat (Camargue, France) by irradiance, temperature and salinity. FEMS Microbiol Ecol 55:195–210

    Article  CAS  PubMed  Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6:415–423

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren.

Additional information

Communicated by Anurag Chaurasia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oren, A. Cyanobacteria in hypersaline environments: biodiversity and physiological properties. Biodivers Conserv 24, 781–798 (2015). https://doi.org/10.1007/s10531-015-0882-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0882-z

Keywords

Navigation