Skip to main content
Log in

Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis

  • Saline Water
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We have used fatty acid analyses to study the community structure of a layered endoevaporitic microbial community within a gypsum crust that covers the bottom of a saltern evaporation pond in Eilat, Israel. This community, living at a salinity of 218–238 g l−1 total dissolved salts, consists of an upper brown layer dominated by unicellular cyanobacteria, a green layer with filamentous cyanobacteria, a red-purple layer with both Chromatium and Ectothiorhodospira/Halorhodospira type of purple sulfur bacteria, and a black layer in which dissimilatory sulfate reduction occurs. An olive-green layer is sometimes present below the red-purple layer. Analysis by gas chromatography/mass spectrometry of the fatty acid methyl esters prepared from the different fractions showed characteristic patterns in each layer, and these could be related to fatty acid composition data from the literature and to fatty acid analyses of representative halophilic microorganisms isolated from the site. The nature of the fatty acids in the green layer suggests that the cyanobacteria present there use the oxygen-independent pathway for production of unsaturated fatty acids, a pathway only occasionally encountered in filamentous cyanobacteria. The facultative anaerobic nature of the cyanobacteria in the green layer was confirmed by their ability to perform anoxygenic photosynthesis with sulfide as electron donor. Specific signature fatty acids identified for each layer corresponded well with the microscopic and functional analysis of the biota present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airs, R. L. & B. J. Keely, 2003. A high resolution study of the chlorophyll and bacteriochlorophyll pigment distributions in a calcite/gypsum microbial mat. Organic Geochemistry 34: 539–551.

    Article  CAS  Google Scholar 

  • Asselineau, J. & H. G. Trüper, 1982. Lipid composition of six species of the phototrophic bacterial genus Ectothiorhodospira. Biochimica et Biophysica Acta 712: 111–116.

    CAS  Google Scholar 

  • Bloch, K., P. Baronowsky, H. Goldfine, W. J. Lennarz, R. Light, A. T. Norris & G. Scheuerbrandt, 1961. Biosynthesis and metabolism of unsaturated fatty acids. Federation Proceedings 20: 921–929.

    PubMed  CAS  Google Scholar 

  • Boon, J. J., J. W. de Leeuw, G. J. v.d. Hoek & J. H. Vosjan, 1977. Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branched β-hydroxy acids in Desulfovibrio desulfuricans. Journal of Bacteriology 129: 1183–1191.

    PubMed  CAS  Google Scholar 

  • Brandt, K. K. & K. Ingvorsen, 1997. Desulfobacter halotolerans sp. nov., a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah. Systematic and Applied Microbiology 20: 366–373.

    Google Scholar 

  • Campbell, S. E., 1985. “Oscillatoria limnetica” from Solar Lake, Sinai, is a Phormidium (Cyanophyta or Cyanobacteria). Archiv für Hydrobiologie Supplement 71: 175–190.

    Google Scholar 

  • Canfield, D. E., K. B. Sørensen & A. Oren, 2004. Biogeochemistry of a gypsum-encrusted microbial ecosystem. Geobiology 2: 133–150.

    Article  CAS  Google Scholar 

  • Caumette, P., 1993. Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia 49: 473–486.

    Article  CAS  Google Scholar 

  • Caumette, P., R. Matheron, N. Raymond & J. -C. Relexans, 1994. Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiology Ecology 13: 273–286.

    Article  CAS  Google Scholar 

  • Christie, W. W., 1993. Preparation of ester derivatives of fatty acids for chromatographic analysis. In Christie W. W. (ed.), Advances in Lipid Methodology, Vol. 2. Oily Press, Dundee: 69–111.

    Google Scholar 

  • Cohen, Y., E. Padan & M. Shilo, 1975. Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Journal of Bacteriology 123: 855–861.

    PubMed  CAS  Google Scholar 

  • Cornée, A., 1984. étude préliminaire des bactéries des saumures et des sédiments des salins de Santa Pola (Espagne). Comparison avec les marais salants de Salin-de-Giraud (Sud de la France). Revista d’Investigaciones Geologiques 38/39: 109–122.

    Google Scholar 

  • Dowling, N. J. E., F. Widdel & D. C. White, 1986. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria. Journal of General Microbiology 132: 1815–1825.

    CAS  Google Scholar 

  • Eder, K., 1995. Gas chromatographic analysis of fatty acid methyl esters. Journal of Chromatography B 671: 113–131.

    CAS  Google Scholar 

  • Garcia-Pichel, F., U. Nübel & G. Muyzer, 1998. The phylogeny of unicellular, extremely halotolerant cyanobacteria. Archives of Microbiology 169: 469–482.

    Article  PubMed  CAS  Google Scholar 

  • Grimalt, J. O., R. de Wit, P. Teixidor & J. Albaiges, 1992. Lipid biogeochemistry of Phormidium and Microcoleus mats. Organic Geochemistry 19: 509–530.

    Article  CAS  Google Scholar 

  • Imhoff, J. F., 1988. Lipids, fatty acids and quinones in taxonomy and phylogeny of anoxygenic phototrophic bacteria. In Olson, J. M., J. G. Ormerod, J. Amesz, E. Stackebrandt & H. G. Trüper (eds), Green Photosynthetic Bacteria. Plenum, New York: 223–232.

  • Imhoff, J. F. & U. Bias-Imhoff, 1995. Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria. In Blankenschip, R. E., M. T. Madigan & C. E. Bauer (eds), Anoxygenic Photosynthetic Bacteria. Kluwer, Dordrecht: 179–205.

  • Imhoff, J. F. & B. Thiemann, 1991. Influence of salt concentration and temperature on the fatty acid compositions of Ectothiorhodospira and other halophilic phototrophic purple bacteria. Archives of Microbiology 156: 370–375.

    Article  CAS  Google Scholar 

  • Jahnke, L. L., B. Lee, M. J. Sweeney & H. P. Klein, 1989. Anaerobic biosynthesis of unsaturated fatty acids in the cyanobacterium, Oscillatoria limnetica. Archives of Microbiology 152: 215–217.

    Article  PubMed  CAS  Google Scholar 

  • Javor, B., 1989. Hypersaline Environments. Microbiology and Biogeochemistry. Springer-Verlag, Berlin.

    Google Scholar 

  • Kates, M., 1966. Biosynthesis of lipids in microorganisms. Annual Reviews of Microbiology 20: 13–44.

    Article  CAS  Google Scholar 

  • Kedar, L., Y. Kashman & A. Oren, 2002. Mycosporine-2-glycine is the major mycosporine-like amino acid in a unicellular cyanobacterium (Euhalothece sp.) isolated from a gypsum crust in a hypersaline saltern pond. FEMS Microbiology Letters 208: 233–237.

    Article  PubMed  CAS  Google Scholar 

  • Kenyon, C. N., 1972. Fatty acid composition of unicellular strains of blue-green algae. Journal of Bacteriology 109: 827–834.

    PubMed  CAS  Google Scholar 

  • Kenyon, C. N., R. Rippka & R. Y. Stanier, 1972. Fatty acid composition and physiological properties of some filamentous blue-green algae. Archiv für Mikrobiologie 83: 216–236.

    Article  PubMed  CAS  Google Scholar 

  • Knief, C., K. Altendorf & A. Lipski, 2003. Linking autotrophic activity in environmental samples with specific bacterial taxa by detection of 13C-labelled fatty acids. Environmental Microbiology 11: 1155–1167.

    Article  CAS  Google Scholar 

  • Margheri, M. C., M. R. Tredici, L. Barsanti & W. Balloni, 1987. The photosynthetic community of the Trapani saline lagoons: an alternative option for the exploitation of an extreme environment. Annali di Microbiologia ed Enzimologia 37: 203–215.

    CAS  Google Scholar 

  • Meissner, J., N. Pfennig, J. H. Krauss, H. Mayer & J. Weckesser, 1988a. Lipopolysaccharides of Thiocystis violacea, Thiocapsa pfennigii, and Chromatium tepidum, species of the family Chromatiaceae. Journal of Bacteriology 170: 3217–3222.

    CAS  Google Scholar 

  • Meissner, J., D. Borowiak, U. Fischer & J. Weckesser, 1988b. The lipopolysaccharide of the phototrophic bacterium Ectothiorhodospira vacuolata. Archives of Microbiology 149: 245–248.

    Article  CAS  Google Scholar 

  • Miller, L. T., 1982. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. Journal of Clinical Microbiology 16: 584–586.

    PubMed  CAS  Google Scholar 

  • Mjøs, S. A., 2003. Identification of fatty acids in gas chromatography by application of different temperature and pressure programs on a single capillary column. Journal of Chromatography A 1015: 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Oren, A., 1990. Estimation of the contribution of halobacteria to the bacterial biomass and activity in solar salterns by the use of bile salts. FEMS Microbiology Ecology 73: 41–48.

    Article  CAS  Google Scholar 

  • Oren, A., 1997. Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiology Journal 14: 233–242.

    Article  Google Scholar 

  • Oren, A., 1999. Bioenergetic aspects of halophilism. Microbiology and Molecular Biology Reviews 63: 334–348.

    PubMed  CAS  Google Scholar 

  • Oren, A. 2000a. Life at high salt concentrations. In Dworkin, M., S. Falkow, E. Rosenberg, K.- H. Schleifer & E. Stackebrandt (eds), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edn., release 3.1, 20 January 2000. Springer, New York, http://link.springer-ny.com/link/service/books/10125/

  • Oren, A., 2000b. Salts and brines. In Whitton, B. A. & M. Potts (eds), Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer, Dordrecht: 281–306.

  • Oren, A., 2001. The order Haloanaerobiales. In Dworkin, M., S. Falkow, E. Rosenberg, K. -H. Schleifer & E. Stackebrandt (eds), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed., release 3.2, 25 July 2001. Springer, New York, http://link.springer-ny.com/link/service/books/10125/

  • Oren, A., 2002. Halophilic Microorganisms and their Environments. Kluwer, Dordrecht.

    Google Scholar 

  • Oren, A. & E. Padan, 1978. Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica. Journal of Bacteriology 133: 558–563.

    PubMed  CAS  Google Scholar 

  • Oren, A., A. Fattom, E. Padan & A. Tietz, 1985. Unsaturated fatty acid composition and biosynthesis in Oscillatoria limnetica and other cyanobacteria. Archives of Microbiology 141: 138–142.

    Article  CAS  Google Scholar 

  • Oren, A., M. Kühl & U. Karsten, 1995. An endevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Marine Ecology Progress Series 128: 151–159.

    Google Scholar 

  • Ratledge, C. & S. G. Wilkinson, 1988. Microbial Lipids. Academic Press, London, 2 volumes.

  • Sørensen, K. B., D. E. Canfield & A. Oren, 2004. Salt responses of benthic microbial communities in a solar saltern (Eilat, Israel). Applied and Environmental Microbiology 70: 1608–1616.

    Article  PubMed  CAS  Google Scholar 

  • Sørensen, K. B., D. E. Canfield, A. P. Teske & A. Oren, 2005. Community composition of a hypersaline endoevaporitic microbial mat. Applied and Environmental Microbiology 71: 7352–7365.

    Article  PubMed  CAS  Google Scholar 

  • Sundh, I., P. Borga, M. Nilsson & B. H. Svensson, 1995. Estimation of cell numbers of methanotrophic bacteria in boreal peatlands based on analysis of specific phospholipid fatty-acids. FEMS Microbiology Ecology 18: 103–112.

    Article  CAS  Google Scholar 

  • Taylor, J. & R. J. Parkes, 1983. The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. Journal of General Microbiology 129: 3303–3309.

    CAS  Google Scholar 

  • Ueki, A. & T. Suto, 1979. Cellular fatty acid composition of sulfate-reducing bacteria. Journal of General and Applied Microbiology 25: 185–196.

    CAS  Google Scholar 

  • Ventosa, A., J. J. Nieto & A. Oren, 1998. Biology of aerobic moderately halophilic bacteria. Microbiology and Molecular Biology Reviews 62: 504–544.

    PubMed  CAS  Google Scholar 

  • von Keitz, V., A. Schramm, K. Altendorf & A. Lipski, 1999. Characterization of microbial communities of biofilters by phospholipid fatty acid analysis and rRNA targeted oligonucleotide probes. Systematic and Applied Microbiology 22: 626–634.

    Google Scholar 

  • Zahr, M., B. Fobel, H. Mayer, J. F. Imhoff, P. Campos & J. Weckesser, 1992. Chemical composition of the lipopolysaccharides of Ectothiorhodospira shaposhnikovii, Ectothiorhodospira mobilis, and Ectothiorhodospira halophila. Archives of Microbiology 157: 499–504.

    CAS  Google Scholar 

  • Zepke, H. D., E. Heinz, A. Radunz, M. Linscheid & R. Pesch, 1978. Combination and positional distribution of fatty acids in lipids from blue-green algae. Archives of Microbiology 119: 157–162.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren.

Additional information

Guest Editor: John M. Melack

Saline Waters and their Biota

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionescu, D., Lipski, A., Altendorf, K. et al. Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis. Hydrobiologia 576, 15–26 (2007). https://doi.org/10.1007/s10750-006-0289-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0289-7

Keywords

Navigation