Skip to main content
Log in

Biological and physical events involved in the origin, effects, and control of organic matter in solar saltworks

  • Published:
International Journal of Salt Lake Research

Abstract

Aspects of communities and events in the concentrating ponds (S.G. 1.130 to 1.214) and salt crystallizing ponds (S.G. 1.215 to 1.264) of solar saltworks pertinent to salt manufacture are described. Communities that aid salt manufacture enable continuous and efficient production of high quality salt at a saltworks' design capacity, and they provide important controls on levels of organic matter in the brine. Fluctuating salinities, high concentrations of nutrients, and petroleum products are disturbances that causeAphanothece halophytica andDunaliella salina to release excessive quantities of organic matter, and that suppress or cause death to nutrient stripping organisms. Disturbances result in decreased quality and quantity of salt and increased costs for salt harvest, washing, and pond upkeep. Organic matter can be controlled by management techniques that keep nutrient stripping communities at proper levels and maintain a narrow and unchanging range of salinities in each pond, by constructing pond dikes able to withstand wind and water erosion, and by preventing spills of petroleum products in the ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baha Al-Deen, B. and Baha Al-Deen, A. 1972. Posible effecto de microalgas en la forma de cristalizacion del cloruro de sodio en la salina de Araya. Boletin del Instituto Oceanografico Universidad de Oriente 11: 35–38.

    Google Scholar 

  • Barcelona, M.J. and Atwood, D.K. 1978. Gypsum-organic interactions in natural seawater: effect of organics on precipitation kinetics and crystal morphology. Marine Chemistry 6: 99–115.

    Article  CAS  Google Scholar 

  • Berland, B., Le Campion, T. and Campos Baeta Neves, M.H. 1989. Interaction de la salinité et de la température sur la morphologie, la croissance et la composition cellulaire d'une Cyanobactérie halotolérante (Aphanothece sp.). Botanica Marina 32: 317–329.

    Article  CAS  Google Scholar 

  • Binford, M.W., Deevey, E.S. and Crisman, T.L. 1983. Paleolimnology: an historical perspective on lacustrine ecosystems. Annual Review of Ecology and Systematics 14: 255–286.

    Article  Google Scholar 

  • Bremer, J.I. 1983. Solar salt production at Exportadora de Sal. Sixth International Symposium on Salt, Vol. 2, pp. 401–406.

    Google Scholar 

  • Britten, R.H. and Johnson, A.R. 1987. An ecological account of a Mediterranean salina: the Salin de Giraud, Camargue (S. France). Biological Conservation 42: 185–230.

    Article  Google Scholar 

  • Brock, T.D. 1976. Halophilic-blue-green algae. Archiv für Microbiologie 107: 109–111.

    CAS  Google Scholar 

  • Burnard, E. and Tyler, J.P. 1993. Brine quality management in solar salt operations. Seventh Symposium on Salt, Vol. 1, pp. 503–508.

    Google Scholar 

  • Butts, D.S. 1977. Solar evaporation chemistry of Great Salt Lake brines. In: D.C. Greer (Ed) Desertic Terminal Lakes. Proceedings of the International Conference on Desertic Terminal Lakes, Weber State College, Utah Water Research Laboratory, Utah State University, Logan, pp. 125–129.

  • Chardard, R. 1990. Nouvelles observations sur la structure et la composition du cell-coat deDunaliella bioculata (algue verte). Cryptogamie Algologie 11: 137–152.

    Google Scholar 

  • Coleman, M.U. and White, M.A. 1993. The role of biological disturbances in the production of solar salt. Seventh Symposium on Salt, Vol. 1, pp. 623–631.

    Google Scholar 

  • Davis, J.S. 1978. Biological communities in a nutrient enriched salina. Aquatic Botany 4: 23–42.

    Article  Google Scholar 

  • Davis, J.S. 1980. Experiences withArtemia in solar saltworks. In: G. Persoone, P. Sorgeloos, Q. Roels and E. Jaspers (Eds) The Brine Shrimp Artemia, Vol. 3. Ecology, Use in Aquaculture. Universa Press, Wetteren, Belgium, pp 51–55.

    Google Scholar 

  • Davis, J.S. 1990 Biological management for the production of salt from seawater. In: J. Akatsuka (Ed) Introduction to Applied Phycology. SPB Academic Publishing, The Hague, pp. 479–488.

    Google Scholar 

  • Davis, J.S. 1993. Biological management for problem solving and biological concepts for a new generation of solar saltworks. Seventh Symposium on Salt, Vol. 1, pp. 611–616.

    Google Scholar 

  • DeMedeiros Rocha, R. and Camara, M.R. 1993. Prediction, monitoring and management of detrimental algal blooms on solar salt production in north-east Brazil. Seventh Sympsium on Salt, Vol. 1, pp. 657–660.

    Google Scholar 

  • Dubessy, J., Geisler, D., Kosztolanyi, C. and Vernet, M. 1983. The determination of sulphate in fluid inclusions using the M.O.L.E. Raman microprobe. Application to a Keuper halite and geochemical consequences. Geochimica et Cosmochimica 47: 1–10.

    Article  CAS  Google Scholar 

  • Geddes, M.C. and Williams, W.D. 1987. Comments onArtemia introductions and the need for conservation. In: P. Sorgeloos, D.A. Bengtson, W. Decleir and E. Jaspers (Eds) Artemia Research And Its Applications, Vol. 3. Universa Press, Wetteren Belgium, pp. 19–26.

    Google Scholar 

  • Geisler, D. 1981. Genèse et évolution des gypses des marais salants de Salin-de-Giraud (Camargue). Bulletin de Minéralogie 104: 625–629.

    CAS  Google Scholar 

  • Geisler, D. 1982. De la mer au sel: les faciès superficials des marais salants de Salin-de-Giraud (Sud de la France). Géologie méditerranéene 9: 521–549.

    CAS  Google Scholar 

  • Gibor, A. 1956. Some ecological relations between phyto-and zooplankton. Biological Bulletin 111: 230–234.

    Google Scholar 

  • Ginsburg, M., Weizinger, G., Cohen, M. and Ginzburg, B. 1990. The adaptation ofDunaliella to widely-differing salt concentrations. Journal of Experimental Botany 41: 685–692.

    Google Scholar 

  • Giordano, M. 1992. Effetti di differenti condizioni di coltura sulla biologia della microalga verde alotolleranteDunaliella salina. PhD thesis, University of Genoa, Italy.

    Google Scholar 

  • Giordano, M., Davis, J.S. and Bowes, G. 1994. Organic carbon release byDunaliella salina (Chlorophyta) under different growth conditions of CO2, nitrogen, and salinity. Journal of Phycology 30: 249–257.

    Article  CAS  Google Scholar 

  • Golubic, S. 1980. Halophily and halotolerance in cyanophytes. Origin of Life 10: 169–183.

    Article  CAS  Google Scholar 

  • Helyar, K.R. and Brown, A.L. 1976. Octan-I-ol extraction of molybdophosphoric acid in the colorimetric determination of orthophosphate. Soil Science Society of America Journal 40: 43–46.

    Article  CAS  Google Scholar 

  • Huntsman, S.A. 1972. Organic excretion byDunaliella tertiolecta. Journal of Phycology 8: 56–63.

    Google Scholar 

  • Javor, B. 1983. Planktonic standing crop and nutrients in a saltern ecosystem. Limnology and Oceanography 28: 153–159.

    Article  CAS  Google Scholar 

  • Jones, A.G., Ewing, C.M. and Melvin, M.V. 1981. Biotechnology for saltfields. Hydrobiologia 82: 391–406.

    Article  Google Scholar 

  • Jones, J.H. and Yopp, J.H. 1979. Cell wall constituents ofAphanothece halophytica. Journal of Phycology 15: 62–66.

    Article  CAS  Google Scholar 

  • Landry, J.C. and Jaccard, J. 1982. Chemie des eaux libres dans le marais salant de Salin-de-Giraud (Sud de la France). Géologie Méditerranéene 9: 329–348.

    CAS  Google Scholar 

  • Loeblich, L.A. 1972. Studies on the brine flagellateDunaliella salina. PhD thesis, University of California, San Diego.

    Google Scholar 

  • McArthur, J.N. 1979. An approach to process and quality control relevant to solar salt field operations in the northwest of Western Australia. Fifth Symposium on Salt, Vol. 2, pp. 325–334.

    Google Scholar 

  • Mohr, V. and Larsen, H. 1963. On the structural transformations and lysis ofHalobacterium salinarium in hypotonic and isotonic solutions. Journal of General Microbiology 31: 267–280.

    CAS  Google Scholar 

  • Nixon, S. 1970. Characteristics of some hypersaline ecosystems. Ph.D. thesis, University of North Carolina, Chapel Hill.

    Google Scholar 

  • Oren, A. and Dubinsky, Z. 1994. On the red coloration of saltern crystallizer ponds. II. Additional evidence for the coloration of halobacterial pigments. International Journal of Salt Lake Research 3: 9–13.

    Article  Google Scholar 

  • Rahaman, A.A., ambikadevi, M. and Sosamma-Esso. 1993a. Biological management of Indian solar saltworks. Seventh Symposium on Salt, Vol. 1, pp. 633–643.

    Google Scholar 

  • Rahaman, A.A., Sosamma-Esso and Ambikadevi, M. 1993b. Hydrobiology of two solar salt-works in India-II. Seventh Symposium on Salt, Vol. 1, pp. 645–655.

    Google Scholar 

  • Sammy, N. 1983. Biological systems in north-western Australian solar saltfields. Sixth Symposium on Salt, Vol. 1, pp. 207–215.

    Google Scholar 

  • Sarig, S., Glasner, A. and Epstein, J.A. 1975. Crystal habit modifiers. I. The relationship between the structure of the additive and the crystal lattice. Journal of Crystal Growth 28: 295–299.

    Article  CAS  Google Scholar 

  • Sarig, S. and Tartakovsky, F. 1975. Crystal habit modifiers. II. The effect of supersaturation on dendritic growth. Journal of Crystal Growth 28: 300–305.

    Article  CAS  Google Scholar 

  • Tackaert, W. and Sorgeloos, P. 1993. The use of brine shrimpArtemia in biological management of solar saltworks. Seventh Symposium on Salt, Vol. 1, pp. 617–622.

    Google Scholar 

  • Takebe, T., Incharoensakdi, A., Arakawa, K. and Yokota, S. 1988. CO2 fixation rate and rubisco content increase in the halotolerant CyanobacteriumAphanothece halophytica grown in high salinities. Plant Physiology 88: 1120–1124.

    Article  Google Scholar 

  • Tindall, D.R., Yopp, J.H., Miller, D.M. and Schmid, W.E. 1978. Physico-chemical parameters governing the growth ofAphanothece halophytica (Chroococcales) in hypersaline media. Phycologia 17: 179–185.

    CAS  Google Scholar 

  • Van Rijn, J. and Cohen, Y. 1983. Ecophysiology of the cyanobacteriumDactylococconsis salina: effect of light intensity, sulphide and temperature. Journal of General Microbiology 129: 1849–1856.

    Google Scholar 

  • Walsby, A.E., Van Rijn, J. and Cohen, Y. 1983. The biology of a new gas-vacuolate cyanobacterium,Dactylococcopsis salina sp. nov., in Solar Lake. Proceedings of the Royal Society, Series B217: 417–447.

    Article  Google Scholar 

  • Ward, D.M. and Brock, T.D. 1978. Hydrocarbon biodegradation in hypersaline environments. Applied and Environmental Microbiology 35: 353–359.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, J.S., Giordano, M. Biological and physical events involved in the origin, effects, and control of organic matter in solar saltworks. International Journal of Salt Lake Research 4, 335–347 (1995). https://doi.org/10.1007/BF01999117

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01999117

Key words

Navigation