Skip to main content

Advertisement

Log in

A clustering optimization strategy to estimate species richness of Sebacinales in the tropical Andes based on molecular sequences from distinct DNA regions

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Fungi are believed to be diverse in the tropics, but because many groups are only known from their DNA sequences this hampers comparative diversity studies. We investigated mycorrhizal Sebacinales (Basidiomycota) of 67 individuals of Ericaceae and Orchidaceae in a tropical mountain ecosystem in Southern Ecuador to provide a first estimate of whether these fungi are particularly diverse in the Northern Andes. We partially sequenced the internal transcribed spacer (ITS) and large subunit (LSU) regions of the nuclear ribosomal DNA and analyzed them together with all Sebacinales sequences available from GenBank. The clustering optimization technique was used to determine clustering parameters that maximize the comparability between molecular operational taxonomic units (MOTUs) obtained from the distinct loci. Sampling effort and species richness were estimated with rarefaction-accumulation curves and non-parametric estimation using Chao2 and compared between Southern Ecuador and France. Clustering optimization indicated that a 1% LSU distance threshold corresponds to the commonly used 3% dissimilarity threshold for ITS, and that a clustering algorithm close to single-linkage clustering is optimal. The resulting clusters show that about 8–9% of observed Sebacinales MOTUs occur in the study area and that most of these MOTUs are endemic (74%). The widespread MOTUs from Southern Ecuador were also found in Panama, North America and Europe. The estimation of species richness revealed unsaturated sampling of Sebacinales in general and also in our study area. Our results suggest a high diversity of Sebacinales associated with Ericaceae and Orchidaceae at the study site in Southern Ecuador, but no hotspot of Sebacinales in comparison with other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BLAST:

Basic local alignment search tool

F :

Linkage fraction

ITS:

Internal transcribed spacer

LSU:

Large subunit (beginning of LSU to primer region LR3)

nrDNA:

Nuclear ribosomal DNA

MOTU:

Molecular operational taxonomic unit

MRI:

Modified Rand index

NCBI:

National Center for Biotechnology Information

PCR:

Polymerase chain reaction

RBSF+S:

Reserva Biológica San Francisco and surroundings

SSU:

Small subunit

T :

Threshold (distance)

References

  • Allen T, Millar T, Berch S et al (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Arnold A, Maynard Z, Gilbert G (2000) Are tropical fungal endophytes hyperdiverse? Ecology 3:267–274

    Google Scholar 

  • Beck E, Makeschin F, Haubrich F et al (2008) The ecosystem (Reserva Biológica San Francisco). In: Beck E, Bendix J, Kottke I et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin

    Chapter  Google Scholar 

  • Bendix J, Rollenbeck R, Reudenbach C (2006) Diurnal patterns of rainfall in a tropical Andean valley of southern Ecuador as seen by a vertically pointing K-band Doppler radar. Int J Climatol 26:829–846

    Article  Google Scholar 

  • Bickford D, Lohman D, Sodhi N et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Duckett JG (2009) Conservative ecological and evolutionary patterns in liverwort-fungal symbioses. Proc R Soc B 277:485–492

    Article  PubMed  Google Scholar 

  • Bonfante-Fasolo P (1980) Occurrence of a basidiomycete in living cells of mycorrhizal hair roots of Calluna vulgaris. Trans Br Mycol Soc 72:320–325

    Article  Google Scholar 

  • Brummitt N, Lughadha EN (2003) Biodiversity: where’s hot and where’s not. Conserv Biol 17:1442–1448

    Article  Google Scholar 

  • Can F (2009) DNA barcoding confirms species rank for a cryptic geometrid species from Turkey and Bulgaria (Lepidoptera: Geometridae: Sterrhinae). Zootaxa 2314:63–68

    Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  PubMed  CAS  Google Scholar 

  • Colwell R (2011) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.2. http://purl.oclc.org/estimates. Accessed 9 June 2011

  • Cullings K (1994) Molecular phylogeny of the Monotropoideae (Ericaceae) with a note on the placement of the Pyroloideae. J Evol Biol 7:501–516

    Article  Google Scholar 

  • Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415

    Article  Google Scholar 

  • Douhan GW, Rizzo DM (2005) Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum. New Phytol 166:263–271

    Article  PubMed  CAS  Google Scholar 

  • Douhan GW, Vincenot L, Gryta H et al (2011) Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115:569–597

    Google Scholar 

  • Drummond A, Ashton B, Cheung M et al (2009) Geneious v4.7. http://www.geneious.com/. Accessed 9 June 2011

  • Eberhardt U (2010) A constructive step towards selecting a DNA barcode for fungi. New Phytol 187:265–268

    Article  PubMed  CAS  Google Scholar 

  • Feuerer T, Hawksworth D (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodivers Conserv 16:85–98

    Article  Google Scholar 

  • Gardes M, Bruns T (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Gargas A, Taylor J (1992) Polymerase chain reaction (PCR) primers for amplifying and sequencing nuclear 18S rDNA from lichenized fungi. Mycologia 84:589–592

    Article  CAS  Google Scholar 

  • Glen M, Tommerup I, Bougher N et al (2002) Are Sebacinaceae common and widespread ectomycorrhizal associates of Eucalyptus species in Australian forests? Mycorrhiza 12:243–247

    Article  PubMed  CAS  Google Scholar 

  • Göker M, García-Blázquez G, Voglmayr H et al (2009) Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS ONE. doi:10.1371/journal.pone.0006319

  • Göker M, Grimm G, Auch A et al (2010) A clustering optimization strategy for molecular taxonomy applied to planktonic Foraminifera SSU rDNA. Evol Bioinform Online 6:97

    Article  PubMed  Google Scholar 

  • Gotelli N, Colwell R (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Haug I, Weiß M, Homeier J et al (2005) Russulaceae and Telephoraceae form ectomycorrhizas with members of the Nyctaginaceae (Caryophyllales) in the tropical mountain rain forest of southern Ecuador. New Phytol 165:923–936

    Article  PubMed  CAS  Google Scholar 

  • Hawksworth D (1993) The tropical fungal biota: census, pertinence, prophylaxis, and prognosis. In: Isaac S, Frankland JC, Whalley JS (eds) Aspects of tropical mycology. University of Cambridge, Melbourne

    Google Scholar 

  • Hawksworth D (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hebert P, Penton E, Burns J et al (2004) Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    Article  PubMed  CAS  Google Scholar 

  • Homeier J, Werner F (2007) Spermatophyta—Checklist Reserva Biológica San Francisco (Prov. Zamora-Chinchipe, S-Ecuador). In: Liede-Schumann L, Breckle S (eds) Provisional checklist of flora and fauna of the San Francisco valley and its surroundings [Reserva Biológica San Francisco/Prov. Zamora - Chinchipe, Southern Ecuador]. Ecotropical Monographs No. 4. The German Society for Tropical Ecology, Hamburg

    Google Scholar 

  • Hopple J Jr, Vilgalys R (1994) Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia 86:96–107

    Article  CAS  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2:193–218

    Article  Google Scholar 

  • Hughes KW, Petersen RH, Lickey EB (2009) Using heterozygosity to estimate a percentage DNA sequence similarity for environmental species’ delimitation across basidiomycete fungi. New Phytol 182:795–798

    Article  PubMed  CAS  Google Scholar 

  • Kottke I, Beiter A, Weiß M et al (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968

    Article  PubMed  Google Scholar 

  • Kottke I, Haug I, Setaro S et al (2008) Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a Neotropical mountain rain forest. Basic Appl Ecol 9:13–23

    Article  CAS  Google Scholar 

  • Kottke I, Suárez J, Herrera P et al (2010) Atractiellomycetes belonging to the “rust” lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic Neotropical orchids. Proc R Soc B 277:1289–1298

    Article  PubMed  Google Scholar 

  • Koufopanou V, Burt A, Taylor JW (1997) Concordance of gene genealogies reveals reproductive isolation in the pathogenic fungus Coccidioides immitis. Proc Natl Acad Sci USA 94:5478–5482

    Article  PubMed  CAS  Google Scholar 

  • Krüger M, Stockinger H, Krüger C et al (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Leeuwenhoek 73:331–371

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Grasso C, Sharlow MF (2002) Multiple sequence alignment using partial order graphs. Bioinformatics 18:452–464

    Article  PubMed  CAS  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Lynch M, Thorn R (2006) Diversity of Basidiomycetes in Michigan agricultural soils. Appl Environ Microbiol 72:7050–7056

    Article  PubMed  CAS  Google Scholar 

  • Morris M, Smith M, Rizzo D et al (2008) Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytol 178:167–176

    Article  PubMed  Google Scholar 

  • Moyersoen B (2006) Pakaraimaea dipterocarpacea is ectomycorrhizal, indicating an ancient Gondwanaland origin for the ectomycorrhizal habit in Dipterocarpaceae. New Phytol 172:753–762

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Newsham K, Bridge P (2010) Sebacinales are associates of the leafy liverwort Lophozia excisa in the southern maritime Antarctic. Mycorrhiza 20:307–313

    Article  PubMed  CAS  Google Scholar 

  • Nilsson R, Kristiansson E, Ryberg M et al (2008) Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform Online 4:193–201

    PubMed  Google Scholar 

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds D, Taylor J (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–233

    Google Scholar 

  • Öpik M, Moora M, Liira J et al (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. Ecology 94:778–790

    Article  Google Scholar 

  • Öpik M, Moora M, Zobel M et al (2008) High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytol 179:867–876

    Article  PubMed  Google Scholar 

  • Peay KG, Kennedy PG, Davies SJ et al (2010) Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. New Phytol 185:529–542

    Article  PubMed  CAS  Google Scholar 

  • Porter T, Skillman J, Moncalvo J (2008) Fruiting body and soil rDNA sampling detects complementary assemblage of Agaricomycotina (Basidiomycota, Fungi) in a hemlock-dominated forest plot in southern Ontario. Mol Ecol 17:3037–3050

    Article  PubMed  CAS  Google Scholar 

  • Pringle A, Baker D, Platt J et al (2005) Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59:1886–1899

    PubMed  CAS  Google Scholar 

  • Ryberg M, Kristiansson E, Sjökvist E et al (2009) An outlook on the fungal internal transcribed spacer sequences in GenBank and the introduction of a web-based tool for the exploration of fungal diversity. New Phytol 181:471–477

    Article  PubMed  CAS  Google Scholar 

  • Selosse M-A, Bauer R, Moyersoen B (2002a) Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytol 155:183–195

    Article  CAS  Google Scholar 

  • Selosse M, Weiß M, Jany J et al (2002b) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) LCM Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844

    Article  PubMed  CAS  Google Scholar 

  • Selosse M, Setaro S, Glatard F et al (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878

    Article  PubMed  CAS  Google Scholar 

  • Selosse M, Dubois M, Alvarez N (2009) Do Sebacinales commonly associate with plant roots as endophytes? Mycol Res 113:1062–1069

    Article  PubMed  CAS  Google Scholar 

  • Setaro SD, Kron KA (2011) Neotropical and North American Vaccinioideae (Ericaceae) share their mycorrhizal Sebacinales—an indication for concerted migration? PLoS Curr 3:RRN1227

  • Setaro S, Weiß M, Oberwinkler F et al (2006a) Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365

    Article  PubMed  CAS  Google Scholar 

  • Setaro S, Kottke I, Oberwinkler F (2006b) Anatomy and ultrastructure of mycorrhizal associations of Neotropical Ericaceae. Mycol Prog 5:243–254

    Article  Google Scholar 

  • Shearer C, Descals E, Kohlmeyer B et al (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Article  Google Scholar 

  • Stielow B, Bubner B, Hensel G et al (2010) The neglected hypogeous fungus Hydnotrya bailii Soehner (1959) is a widespread sister taxon of Hydnotrya tulasnei (Berk.) Berk. & Broome (1846). Mycol Prog 9:195–203

    Article  Google Scholar 

  • Stielow B, Bratek Z, Orczán A et al (2011) Species delimitation in taxonomically difficult fungi: the case of Hymenogaster. PLoS ONE 6:e15614

    Article  PubMed  CAS  Google Scholar 

  • Suárez JP, Weiß M, Abele A et al (2008) Members of Sebacinales subgroup B form mycorrhizae with epiphytic orchids in a Neotropical mountain rain forest. Mycol Prog 7:75–85

    Article  Google Scholar 

  • Swofford D (2002) Paup* phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland

  • Tedersoo L, Gates G, Dunk C et al (2009) Establishment of ectomycorrhizal fungal community on isolated Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests: does fruit-body type matter? Mycorrhiza 19:403–416

    Article  PubMed  Google Scholar 

  • Urban A, Weiß M, Bauer R (2003) Ectomycorrhizas involving sebacinoid mycobionts. Mycol Res 107:3–14

    Article  PubMed  Google Scholar 

  • Warcup J (1988) Mycorrhizal associations of isolates of Sebacina vermifera. New Phytol 110:227–231

    Article  Google Scholar 

  • Weiß M, Selosse M, Rexer K et al (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

  • Weiß M, Sýkorová Z, Garnica S et al (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS ONE 6:e16793

    Article  PubMed  Google Scholar 

  • White T, Bruns T, Lee S et al (1990) Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to method and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54:844–851

    Article  PubMed  Google Scholar 

  • Yilmaz P, Kottmann R, Field D et al (2010) The “minimum information about an environmental sequence” (MIENS) specification. Nat Preced. doi:10.1038/npre.2010.5252.2

Download references

Acknowledgments

We thank Jim Luteyn and Paola Pedraza for help with species identification of Neotropical Ericaceae and Michael Weiß for kindly providing Sebacinales-specific primers. We also express our gratitude to Ingrid Kottke for valuable comments and Tanja Schuster for critically revising earlier versions of this manuscript. We thank Jörg Bendix, Rüttger Rollenbeck and Christoph Reudenbach for providing a map of Ecuador. In addition, the support and assistance of the UTPL in Loja, Ecuador and members of the research group FOR 816 are highly appreciated. This project was funded by the DFG as part of the research unit FOR 816.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina D. Setaro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10531_2011_205_MOESM1_ESM.tif

Fig. S1: Plot of modified Rand indices (MRI) observed during cluster optimization with a linkage fraction of 0.1 (TIFF 404 kb)

Table S1: General information about sequences from all three data sets (XLS 341 kb)

10531_2011_205_MOESM3_ESM.xls

Table S2: Numbers of molecular operational taxonomic units (MOTUs) of Sebacinales obtained with distinct clustering approaches (XLS 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Setaro, S.D., Garnica, S., Herrera, P.I. et al. A clustering optimization strategy to estimate species richness of Sebacinales in the tropical Andes based on molecular sequences from distinct DNA regions. Biodivers Conserv 21, 2269–2285 (2012). https://doi.org/10.1007/s10531-011-0205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0205-y

Keywords

Navigation