Skip to main content

Advertisement

Log in

Members of Sebacinales subgroup B form mycorrhizae with epiphytic orchids in a neotropical mountain rain forest

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Previous investigations revealed that epiphytic orchids in a mountain rain forest in southern Ecuador formed mycorrhizae with diverse members of Tulasnellales. Using specific primers, we now show that the same orchids are also associated with Sebacinales. Ultrastructural observations confirmed the Sebacinales mycobionts in situ. Mycorrhizae of flowering individuals of Stelis hallii, S. superbiens, S. concinna and Pleurothallis lilijae were sampled in different forest types of the mountain rain forest of southern Ecuador along an altitudinal gradient between 1,850 and 2,100 m a.s.l. Phylogenetic analysis of fungal nuclear rDNA sequences coding for the ribosomal large subunit (nucLSU) showed the presence of eight sequence types based on proportional differences of <1% bp. All sequence types clustered in the Sebacinales subgroup B which also contained sequences of mycobionts from ericads and terrestrial orchids. Sequences of the nuclear rDNA 5.8S subunit, including parts of the internal transcribed spacers ITS1 and ITS2 (5.8-ITS) from the mycobionts of the epiphytic orchids, were distinct from published sequences of sebacinoid mycobionts of green terrestrial orchids and ericads. Sebacinales sequences from different epiphytic orchid species differed at least by 1% bp as was previously found for Tulasnella sequences. Sebacinales occurred less frequently and with a lower number of sequence types than Tulasnellales, but distribution along the altitudinal gradient was similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-Blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Avis PG, McLaughlin DJ, Dentinger BC, Reich PB (2003) Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytol 160:239–253

    Article  Google Scholar 

  • Bauer R (2004) Basidiomycetous interfungal cellular interactions - a synopsis. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycote mycology. IHW, Eching, Germany, pp 325–337

    Google Scholar 

  • Beck E, Makeschin F, Haubrich F, Richter M, Bendix J, Valarezo C (2008) The ecosystem (Reserva Biológica San Francisco). In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies, no.198. Springer, Berlin Heidelberg New York, pp 1–14

    Chapter  Google Scholar 

  • Bendix J, Rollenbeck R, Reudenbach C (2006) Diurnal patterns of rainfall in a tropical Andean valley of southern Ecuador as seen by a vertically pointing K-band Doppler Radar. Int J Climatol 26:829–847

    Article  Google Scholar 

  • Bendix J, Rollenbeck R, Richter M, Fabian P, Emck P (2008) Climate. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies, no.198. Springer, Berlin Heidelberg New York, pp 63–74

    Chapter  Google Scholar 

  • Bidartondo MI, Bruns TD, Weiß M, Sergio S, Read DJ (2003) Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc London B 270:835–842

    Article  Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B 271:1799–1806

    Article  CAS  Google Scholar 

  • Bougoure JJ, Bougoure DS, Cairney JW, Dearnaley JD (2005) ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycol Res 109:452–460

    Article  PubMed  CAS  Google Scholar 

  • Cameron KM (2005) Leave it to the leaves: a molecular phylogenetic study of Malaxideae (Epidendroideae, Orchidaceae). Am J Bot 96:1025–1032

    Article  Google Scholar 

  • Colwell RK (2004) EstimateS: statistical estimate of species richness and shared species from samples. Version 7. Persistent URL: purl.oclc.org/estimates

  • Cullings KW (1994) Molecular phylogeny of the Monotropoideae (Ericaceae) with a note on the placement of the Pyroloideae. J Evol Biol 7:501–516

    Article  Google Scholar 

  • Currah RS, Zelmer CD, Hambleton S, Richardson KA (1997) Fungi from orchid mycorrhizae. In: Arditti J, Pridgeon AM (eds) Orchid biology: reviews and perspectives, VII. Kluwer, Dordrecht, Netherlands, pp 117–170

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gardes M, Bruns D (1993) ITS primers with enhanced specifity for basidiomycetes–application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Gascuel O (1997) BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695

    PubMed  CAS  Google Scholar 

  • Glen M, Tommerup IC, Bougher NL, O, Brien PA (2002) Are Sebacinaceae common and widespread ectomycorrhizal associates of Eucalyptus species in Australian forests? Mycorrhiza 12:243–247

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Homeier J (2004) Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Bergregenwälder in Ecuador und Costa Rica. Dissertationes Botanicae, vol. 391, Cramer, Berlin

  • Homeier J, Werner FA, Breckle S-W, Gradstein SR, Richter M (2008) Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of ecuador. Ecological Studies, no.198. Springer, Berlin Heidelberg New York, pp 87–100

    Chapter  Google Scholar 

  • Julou T, Burghardt B, Gebauer G, Berveilleir D, Damesin C, Selosse M-A (2005) Mixotrophy in orchids: insight from a comparative study of green individuals and non-photosynthestic individuals of Cephalanthera damasonium. New Phytol 166:639–653

    Article  PubMed  CAS  Google Scholar 

  • Kahn SR, Kimbrough JW (1980) Septal ultrastructure in some genera of the Tremellaceae. Can J Bot 58:55–60

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde glutaraldehyde fixation of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  PubMed  CAS  Google Scholar 

  • Kennedy PG, Izzo AD, Bruns TD (2003) There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol 91:1071–1080

    Article  Google Scholar 

  • Kottke I, Beiter A, Weiss M, Haug I, Oberwinkler F, Nebel M (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968

    Article  PubMed  Google Scholar 

  • Kottke I, Haug I, Setaro S, Suárez JP, Weiß M, Preußing M, Nebel M, Oberwinkler F (2008) Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest. Basic Appl Ecol 9:13–23

    Article  CAS  Google Scholar 

  • Ma M, Tan TK, Wong SM (2003) Identification and molecular phylogeny of Epulorhiza isolates from tropical orchids. Mycol Res 107:1041–1049

    Article  PubMed  CAS  Google Scholar 

  • McCormick M, Whigham DF, Sloan D, O, Malley K, Hodkinson B (2006) Orchid-fungus fidelity: a marriage meant to last? Ecology 87:903–911

    Article  PubMed  Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247

    Article  Google Scholar 

  • Moncalvo J-M, Nilsson RH, Koster B, Dunham SM, Bernauer T, Matheny PB, McLenon T, Margaritescu S, Weiß M, Garnica S, Danell E, Langer G, Langer E, Larsson E, Larsson K-H, Vilgalys R (2007) [“2006”] The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia 98:937–948

    Article  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858

    Article  CAS  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2004) Differences in mycorrhizal preferences between two tropical orchids. Mol Ecol 13:2393–2404

    Article  PubMed  CAS  Google Scholar 

  • Paulsch A, Piechowski D, Müller-Hohenstein K (2008) Forest vegetation structure along an altitudinal gradient in southern Ecuador. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies, no.198. Springer, Berlin Heidelberg New York, pp 113–122

    Chapter  Google Scholar 

  • Pereira OL, Rollemberg CL, Borges AC, Matsuoka K, Kasuya MCM (2003) Epulorhiza epiphytica sp. nov. isolated from mycorrhizal roots of epiphytic orchids in Brazil. Mycoscience 44:153–155

    Article  Google Scholar 

  • Pereira OL, Kasuya MCM, Borges AC, Fernandes de Araújo E (2005) Morphological and molecular characterization of mycorrhizal fungi isolated from neotropical orchids in Brazil. Can J Bot 83:54–65

    Article  CAS  Google Scholar 

  • Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088

    Article  Google Scholar 

  • Pridgeon AM, Chase MW (2001) A phylogenetic reclassification of Pleurothallidinae (Orchidaceae). Lindleyana 16:235–271

    Google Scholar 

  • Richard F, Millot S, Gardes M, Selosse M-A (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol 166:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Roberts P (1999) Rhizoctonia-forming fungi: a taxonomic guide. Royal Botanic Gardens, Kew

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Selosse M-A, Bauer R, Moyersoen B (2002a) Basal Hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees in silva: microscopical and molecular evidence. New Phytol 155:183–195

    Article  CAS  Google Scholar 

  • Selosse M-A, Weiß M, Jany JL, Tillier A (2002b) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844

    Article  PubMed  CAS  Google Scholar 

  • Selosse M-A, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426

    Article  PubMed  CAS  Google Scholar 

  • Selosse M-A, Setaro S, Glatard F, Richard F, Urcelay C, Weiß M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878

    Article  PubMed  CAS  Google Scholar 

  • Setaro S, Oberwinkler F, Kottke I (2006a) Anatomy and ultrastructure of mycorrhizal associations of neotropical Ericaceae. Mycol Progr 5:243–254

    Article  Google Scholar 

  • Setaro S, Weiß M, Oberwinkler F, Kottke I (2006b) Sebacinales form ectendomycorrhizae with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365

    Article  PubMed  CAS  Google Scholar 

  • Shefferson RP, Weiß M, Kull T, Taylor L (2005) High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium. Mol Ecol 14:613–626

    Article  PubMed  CAS  Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  PubMed  CAS  Google Scholar 

  • Suárez JP, Weiß M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi form mycorrhizae with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*4.0 Phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland, Mass., USA

    Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic Inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer, Sunderland, Mass., USA, pp 407–514

    Google Scholar 

  • Taylor DL, Bruns TD, Szaro TM, Hodges SA (2003) Divergence in mycorrhizal specialization with Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am J Bot 90:1168–1179

    Article  CAS  Google Scholar 

  • Tedersoo L, Suvi T, Larsson E, Kõljalg U (2006) Diversity and community structure of ectomycorrhizal fungi in a wooded meadow. Mycol Res 110:734–748

    Article  PubMed  Google Scholar 

  • Urban A, Weiß M, Bauer R (2003) Ectomycorrhizae involving sebacinoid mycobionts. Mycol Res 107:3–14

    Article  PubMed  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    PubMed  CAS  Google Scholar 

  • Walker JF, Parrent JL (2004) Molecular phylogenetic evidence for the mycorrhizal status of Tremellodendron (Sebacinaceae). Mem N Y Bot Gard 89:291–296

    Google Scholar 

  • Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87:371–381

    Article  Google Scholar 

  • Warcup JH (1988) Mycorrhizal associations of isolates of Sebacina vermifera. New Phytol 110:227–231

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1967) Perfect states of rhizoctonias associated with orchids I. New Phytol 66:631–641

    Article  Google Scholar 

  • Weiß M, Selosse M-A, Rexer K, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

  • White TJ, Bruns TD, Lee SB, Taylor JW (1990) Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. In: Innis MA, Gelfand DH, Sninsky JN, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Williams PG, Thilo E (1989) Ultrastructural evidence for the identity of some multinucleate rhizoctonias. New Phytol 112:513–518

    Article  Google Scholar 

  • Yoder JA, Zettler LW, Stewart SL (2000) Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Sci 156:145–150

    Article  PubMed  CAS  Google Scholar 

  • Zotz G, Hietz P (2001) The physiological ecology of vascular epiphytes: current knowledge, open questions. J Exp Bot 52:2067–2078

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deutsche Forschungsgemeinschaft (DFG project FOR 402). We thank the Fundación Científica San Francisco for providing research facilities, Lorena Endara for help in orchid identification and Paulo Herrera for his help in laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Suárez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suárez, J.P., Weiß, M., Abele, A. et al. Members of Sebacinales subgroup B form mycorrhizae with epiphytic orchids in a neotropical mountain rain forest. Mycol Progress 7, 75–85 (2008). https://doi.org/10.1007/s11557-008-0554-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-008-0554-4

Keywords

Navigation