Skip to main content

Advertisement

Log in

Genetic diversity, reproductive mode, and dispersal differ between the cryptic invader, Phragmites australis, and its native conspecific

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Genetic diversity and reproductive mode can control whether an introduced species becomes invasive. Here we use genetic tools to compare the non-native, invasive Phragmites australis to its native conspecific, P. australis subsp. americanus, in wetlands of Utah and southern Idaho. We found striking differences in genetic structuring, population diversity, and mode of reproduction between the two lineages. Non-native P. australis exhibited substantially more genetic homogeneity among populations, greater local genet richness, greater genetic diversity among individuals, and smaller average clone size compared to the native lineage. These findings suggest that non-native P. australis relies more heavily on sexual reproduction and disperses pollen and/or seeds more widely than native P. australis. We also found no evidence of hybridization between the two lineages, nor did we find evidence of local extirpations of native by non-native P. australis based on historical collection sites we revisited. Given the ability of non-native P. australis to disperse widely by seeds, we recommend careful monitoring of critical wetland habitat to detect new non-native P. australis invasions and incorporating new practices into Phragmites management that limit sexual reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Able KW, Hagan SM, Brown SA (2003) Mechanisms of marsh habitat alteration due to Phragmites: Response of young-of-the-year mummichog (Fundulus heteroclitus) to treatment for Phragmites removal. Est Coasts 26:484–494

    Article  Google Scholar 

  • Amsberry L, Baker MA, Ewanchuk PJ et al (2000) Clonal integration and the expansion of Phragmites australis. Ecol Appl 10:1110–1118

    Article  Google Scholar 

  • Baldwin AH, Kettenring KM, Whigham DF (2010) Seed banks of Phragmites australis-dominated brackish wetlands: relationships to seed viability, inundation, and land cover. Aquat Bot 93:163–169

    Article  Google Scholar 

  • Barrett SCH, Colautti RI, Eckert CG (2008) Plant reproductive systems and evolution during biological invasion. Mol Ecol 17:373–383

    Article  PubMed  Google Scholar 

  • Bart D, Hartman JM (2000) Environmental determinants of Phragmites australis expansion in a New Jersey salt marsh: an experimental approach. Oikos 89:59–69

    Article  Google Scholar 

  • Bart D, Hartman JM (2002) Environmental constraints on early establishment of Phragmites australis in salt marshes. Wetlands 22:201–213

    Article  Google Scholar 

  • Bart D, Hartman JM (2003) The role of large rhizome dispersal and low salinity windows in the establishment of common reed, Phragmites australis, in salt marshes: New links to human activities. Est Coasts 26:436–443

    Article  Google Scholar 

  • Belzile F, Labbé J, LeBlanc M-C et al (2010) Seeds contribute strongly to the spread of the invasive genotype of the common reed (Phragmites australis). Biol Invasions 12:2243–2250

    Article  Google Scholar 

  • Benham JJ (2001) Genographer, version 1.6.0. Montana State University, Bozeman, Montana

  • Bossdorf O, Auge H, Lafuma L et al (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11

    Article  PubMed  Google Scholar 

  • Clevering OA, Lissner J (1999) Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat Bot 64:185–208

    Google Scholar 

  • Clevering OA, Brix H, Lukavska J (2001) Geographic variation in growth responses in Phragmites australis. Aquat Bot 69:89–108

    Article  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211

    Article  Google Scholar 

  • DeWalt SJ, Denslow JS, Ickes K (2004) Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecol 85:471–483

    Article  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  PubMed  CAS  Google Scholar 

  • Duchesne P, Bernatchez L (2002) AFLPOP: a computer program for simulated and real population allocation, based on AFLP data. Mol Ecol Notes 2:380–383

    Article  CAS  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Nat Acad Sci 97:7043–7050

    Article  PubMed  CAS  Google Scholar 

  • Ellstrand N, Schierenbeck K (2006) Hybridization as a stimulus for the evolution of invasiveness in plants? Euphyt 148:35–46

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Google Scholar 

  • Facon B, Pointier J-P, Jarne P et al (2008) High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr Biol 18:363–367

    Article  PubMed  CAS  Google Scholar 

  • Galatowitsch SM, Anderson NO, Ascher PD (1999) Invasiveness in wetland plants in temperate North America. Wetlands 19:733–755

    Article  Google Scholar 

  • Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14:4275–4285

    Article  PubMed  CAS  Google Scholar 

  • Hansen DL, Lambertini C, Jampeetong A et al (2007) Clone-specific differences in Phragmites australis: Effects of ploidy level and geographic origin. Aquat Bot 86:269–279

    Article  Google Scholar 

  • Hardy OJ (2003) Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol Ecol 12:1577–1588

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Google Scholar 

  • Hauswaldt JS, Glenn TC (2003) Microsatellite DNA loci from the Diamondback terrapin (Malaclemys terrapin). Mol Ecol Notes 3:174–176

    Article  CAS  Google Scholar 

  • Holdredge C, Bertness MD, Von Wettberg E et al (2010) Nutrient enrichment enhances hidden differences in phenotype to drive a cryptic plant invasion. Oikos 119:1776–1784

    Article  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Keller BEM (2000) Plant diversity in Lythrum, Phragmites, and Typha marshes, Massachusetts, U.S.A. Wetlands Ecol Manage 8:391–401

    Article  Google Scholar 

  • Kettenring KM, Whigham DF (2009) Seed viability and seed dormancy of non-native Phragmites australis in suburbanized and forested watersheds of the Chesapeake Bay, USA. Aquat Bot 91:199–204

    Article  Google Scholar 

  • Kettenring KM, McCormick MK, Baron HM et al (2010) Phragmites australis (common reed) invasion in the Rhode River subestuary of the Chesapeake Bay: disentangling the effects of foliar nutrients, genetic diversity, patch size, and seed viability. Est Coasts 33:118–126

    Article  CAS  Google Scholar 

  • Kettenring KM, McCormick MK, Baron HM et al (2011) Mechanisms of Phragmites australis invasion: feedbacks among genetic diversity, nutrients, and sexual reproduction. J Appl Ecol 48:1305–1313

    Article  Google Scholar 

  • Kirk H, Paul J, Straka J et al (2011) Long-distance dispersal and high genetic diversity are implicated in the invasive spread of the common reed, Phragmites australis (Poaceae), in northeastern North America. Am J Bot 98:1180–1190

    PubMed  Google Scholar 

  • Koppitz H, Kühl H (2000) To the importance of genetic diversity of Phragmites australis in the development of reed stands. Wetlands Ecol Manage 8:403–414

    Article  Google Scholar 

  • Kulmatiski A, Beard KH, Meyerson LA et al (2011) Nonnative Phragmites australis invasion into Utah wetlands. West N Am Nat 70:541–552

    Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Nat Acad Sci 104:3883–3888

    Article  PubMed  CAS  Google Scholar 

  • League M, Colbert E, Seliskar D et al (2006) Rhizome growth dynamics of native and exotic haplotypes of Phragmites australis (Common reed). Est Coasts 29:269–276

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Marks M, Lapin B, Randall J (1994) Phragmites australis (Phragmites communis): threats, management, and monitoring. Nat Areas J 14:285–294

    Google Scholar 

  • McCormick MK, Kettenring KM, Baron HM et al (2010a) Extent and reproductive mechanisms of Phragmites australis spread in brackish wetlands in Chesapeake Bay, Maryland (USA). Wetlands 30:67–74

    Article  Google Scholar 

  • McCormick MK, Kettenring KM, Baron HM et al (2010b) Spread of invasive Phragmites australis in estuaries with differing degrees of development: genetic patterns, Allee effects and interpretation. J Ecol 98:1369–1378

    Article  Google Scholar 

  • Meirmans PG, van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Meyerson LA, Chambers RM, Vogt KA (1999) The effects of Phragmites removal on nutrient pools in a freshwater tidal marsh ecosystem. Biol Invasions 1:129–136

    Article  Google Scholar 

  • Meyerson LA, Lambert AM, Saltonstall K (2010a) A tale of three lineages: expansion of common reed (Phragmites australis) in the U.S. Southwest and Gulf Coast. Inv Pl Sci Mngt 3:515–520

    Google Scholar 

  • Meyerson LA, Viola DV, Brown RN (2010b) Hybridization of invasive Phragmites australis with a native subspecies in North America. Biol Invasions 12:103–111

    Article  Google Scholar 

  • Minchinton TE, Bertness MD (2003) Disturbance-mediated competition and the spread of Phragmites australis in a coastal marsh. Ecol Appl 13:1400–1416

    Article  Google Scholar 

  • Minchinton TE, Simpson JC, Bertness MD (2006) Mechanisms of exclusion of native coastal marsh plants by an invasive grass. J Ecol 94:342–354

    Article  Google Scholar 

  • Mock KE, Brim-Box JC, Miller MP et al (2004) Genetic diversity and divergence among freshwater mussel (Anodonta) populations in the Bonneville Basin of Utah. Mol Ecol 13:1085–1098

    Article  PubMed  CAS  Google Scholar 

  • Mozdzer TJ, Zieman JC (2010) Ecophysiological differences between genetic lineages facilitate the invasion of non-native Phragmites australis in North American Atlantic coast wetlands. J Ecol 98:451–458

    Article  Google Scholar 

  • Mozdzer T, Zieman J, McGlathery K (2010) Nitrogen uptake by native and invasive temperate coastal macrophytes: Importance of dissolved organic nitrogen. Est Coasts 33:784–797

    Article  CAS  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Paetkau D (2004) The optimal number of markers in genetic capture-mark-recapture studies. J Wildl Manage 68:449–452

    Article  Google Scholar 

  • Paul J, Vachon N, Garroway C et al (2010) Molecular data provide strong evidence of natural hybridization between native and introduced lineages of Phragmites australis in North America. Biol Invasions 12:2967–2973

    Article  Google Scholar 

  • Peakall R, Smouse P (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Raicu P, Staicu S, Stoian V et al (1972) The Phragmites communis Trin. chromosome complement in the Danube Delta. Hydrobiol 39:83–89

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecol 77:1655–1661

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Nat Acad Sci 99:2445–2449

    Article  PubMed  CAS  Google Scholar 

  • Saltonstall K (2003a) Genetic variation among North American populations of Phragmites australis: implications for management. Est Coasts 26:444–451

    Article  Google Scholar 

  • Saltonstall K (2003b) Microsatellite variation within and among North American lineages of Phragmites australis. Mol Ecol 12:1689–1702

    Article  PubMed  CAS  Google Scholar 

  • Saltonstall K (2003c) A rapid method for identifying the origin of North American Phragmites populations using RFLP analysis. Wetlands 23:1043–1047

    Article  Google Scholar 

  • Saltonstall K (2011) Remnant native Phragmites australis maintains genetic diversity despite multiple threats. Conserv Genet 12:1027–1033

    Article  Google Scholar 

  • Saltonstall K, Stevenson JC (2007) The effect of nutrients on seedling growth of native and introduced Phragmites australis. Aquat Bot 86:331–336

    Article  CAS  Google Scholar 

  • Saltonstall K, Peterson PM, Soreng RJ (2004) Recognition of Phragmites australis subsp. americanus (Poaceae: Arundinoideae) in North America: evidence from morphological and genetic analyses. SIDA 21:683–692

    Google Scholar 

  • Saltonstall K, Glennon K, Burnett A et al (2007) Comparison of morphological variation indicative of ploidy level in Phragmites australis (Poaceae) from eastern North America. Rhodora 109:415–429

    Article  Google Scholar 

  • Saltonstall K, Lambert A, Meyerson LA (2010) Genetics and reproduction of common (Phragmites australis) and giant reed (Arundo donax). Inv Pl Sci Mngt 3:495–505

    Google Scholar 

  • Silvertown J (2008) The evolutionary maintenance of sexual reproduction: evidence from the ecological distribution of asexual reproduction in clonal plants. Int J Pl Sci 169:157–168

    Article  Google Scholar 

  • Swearingen J, Saltonstall K (2010) Phragmites field guide: distinguishing native and exotic forms of common reed (Phragmites australis) in the United States

  • Talley TS, Levin LA (2001) Modification of sediments and macrofauna by an invasive marsh plant. Biol Invasions 3:51–68

    Article  Google Scholar 

  • Vasquez EA, Glenn EP, Brown JJ et al (2005) Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae). Mar Ecol Prog Ser 298:1–8

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Div Dist 14:569–580

    Article  Google Scholar 

  • Windham L, Ehrenfeld JG (2003) Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh. Ecol Appl 13:883–897

    Article  Google Scholar 

  • Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39–59

    Google Scholar 

Download references

Acknowledgments

We thank Jer Pin Chong for assistance with the molecular analysis, and Jared Baker and Mike Taylor for assistance in the field. Funding was provided by the Intermountain West Joint Venture, the US Fish and Wildlife Service, and the Utah Wetlands Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin M. Kettenring.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4.97 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kettenring, K.M., Mock, K.E. Genetic diversity, reproductive mode, and dispersal differ between the cryptic invader, Phragmites australis, and its native conspecific. Biol Invasions 14, 2489–2504 (2012). https://doi.org/10.1007/s10530-012-0246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0246-5

Keywords

Navigation