Skip to main content
Log in

Genetic variation among North American populations ofPhragmites australis: Implications for management

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Over the past century, the distribution and abundance ofPhragmites australis (common reed) has dramatically increased in both freshwater and brackish wetlands throughout North America. It has been hypothesized that the increased competitive ability ofPhragmites could be the result of an introduction of a more aggressive genotype. Sequence data from 2 noncoding regions of the chloroplast genome show that, historically, 11 native haplotypes were found across North America and population-structuring distinguishing samples from the Atlantic Coast, Midwest, West, and Gulf Coast regions of the continent was evident. Today a single genetically-distinct haplotype dominates the Atlantic Coast and is also found across the continent in lower frequencies; this type is common in Europe and Asia and has most likely been introduced to North America. Comparisons of modern populations with historic samples show that along the Atlantic Coast, this cosmopolitan type has replaced native haplotypes and it is invading new sites throughout the rest of the country. In the Midwest and West, native populations are still common but introduced populations are found along roadsides throughout the area. Gulf Coast populations are dominated by another population type that is genetically distinct from all other North American population types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bertness, M. D., P. J. Ewanchuk, andB. R. Silliman. 2002. Anthropogenic modification of New England salt marsh landscapes.Proceedings of the National Academy of Sciences U.S.A. 99: 1395–1398.

    Article  CAS  Google Scholar 

  • Castelloe, J., andA. R. Templeton. 1994. Root probabilities for intraspecific gene trees under neutral coalescent theory.Molecular Phylogenetics and Evolution 3:102–113.

    Article  CAS  Google Scholar 

  • Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–273.

    Article  Google Scholar 

  • Clement, M., D. Posada, andK. A. Crandall. 2000. TCS: A computer program to estimate gene genealogies.Molecular Ecology 9:1657–1660.

    Article  CAS  Google Scholar 

  • Clevering, O. A., andJ. Lissner. 1999. Taxonomy, chromosome numbers, clonal diversity and population dynamics ofPhragmites australis.Aquatic Botany 64:185–208.

    Article  Google Scholar 

  • Djebrouni, M.. 1992. Variabilité morphologique, caryologique et enzymatique chez quelques populations dePhragmites australis (Cav.) Trin. ex Steud.Folia Geobotanica et Phytotaxonomica 27: 49–59.

    Google Scholar 

  • Doyle, J. J., andE. E. Dickson. 1987. Preservation of plant samples for DNA restriction endonuclease analysis.Taxon 36:715–722.

    Article  Google Scholar 

  • Dumolin-Lapeque, S., B. Demesure, S. Fineschi, V. L. Corre, andR. J. Petit. 1997. Phylogeographic structure of white oaks throughout the European continent.Genetics 146:1475–1487.

    Google Scholar 

  • Fournier, W., D. P. Hauber, andD. A. White. 1995. Evidence of infrequent sexual propagation ofPhragmites australis throughout the Mississippi River delta.American Journal of Botany 82:71.

    Google Scholar 

  • Goman, M., andL. Wells. 2000. Trends in river flow affecting the northeastern reach of the San Francisco Bay estuary over the past 7,000 years.Quaternary Research 54:206–217.

    Article  CAS  Google Scholar 

  • Hamilton, M. B. 1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation.Molecular Ecology 8:513–525.

    Article  Google Scholar 

  • Hansen, R. M. 1978. Shasta ground sloth food habits, Rampart Cave, Arizona.Paleobiology 4:302–319.

    Google Scholar 

  • Hauber, D. P., D. A. White, S. P. Powers, andF. R. De-Francesch. 1991. Isozyme variation and correspondence with unusual infrared reflectance patterns inPhragmites australis (Poaceae).Plant Systematics and Evolution 178:1–8.

    Article  CAS  Google Scholar 

  • Keller, B. E. M. 2000. Genetic variation among and within populations ofPhragmites australis in the Charles River watershed.Aquatic Botany 66:195–208.

    Article  Google Scholar 

  • Koppitz, H. 1999. Analysis of genetic diversity among selected populations ofPhragmites australis worldwide.Aquatic Botany 64:209–221.

    Article  Google Scholar 

  • Koppitz, H., H. Kuehl, K. Hesse, andJ. G. Kohl. 1997. Some aspects of the importance of genetic diversity inPhragmites australis (Cav.) Trin. ex Steudel for the development of reed stands.Botanica Acta 110:217–223.

    Google Scholar 

  • Lynch, E. A., andK. Saltonstall. 2002. Paleoecological and genetic analyses provide evidence for recent expansion of nativePhragmites australis populations in a Lake Superior wetland.Wetlands, 22:637–646.

    Article  Google Scholar 

  • Marks, M., B. Lapin, andJ. Randall 1994.Phragmites australis (P. communis): Threats, management, and monitoring.Natural Areas Journal 14:285–294.

    Google Scholar 

  • McCauley, D. E. 1995. The use of chloroplast DNA polymorphism in studies of gene flow in plants.Trends in Ecology and Evolution 10:198–202.

    Article  Google Scholar 

  • Meyerson, L. A., K. Saltonstall, L. M. Windham, E. Kiviat, andS. Findlay. 2000. A comparison ofPhragmites australis in freshwater and brackish marsh environments in North America.Wetlands Ecology and Management 8:89–103.

    Article  CAS  Google Scholar 

  • Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Niering, W. A., R. S. Warren, andC. G. Weymouth. 1977. Our dynamic tidal marshes: Vegetation changes as revealed by peat analysis.Connecticut Arboretum Bulletin 12:22.

    Google Scholar 

  • Ohsako, T., andO. Ohnishi. 2000. Intra- and interspecific phylogeny of wildFagopyrum (Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA.American Journal of Botany 87:573–582.

    Article  CAS  Google Scholar 

  • Orson, R. 1999. A paleoecological assessment ofPhragmites australis in New England tidal marshes: Changes in plant community structure during the last millennium.Biological Invasions 1:149–158.

    Article  Google Scholar 

  • Pellegrin, D., andD. P. Hauber. 1999. Isozyme variation among populations of the clonal species,Phragmites australis (Cav.) Trin. ex Steudel.Aquatic Botany 63:241–259.

    Article  CAS  Google Scholar 

  • Powell, W., M. Morgante, C. Andre, J. W. McNicol, G. C. Machray, J. J. Doyle, S. V. Tingey, andJ. A. Rafalski. 1995. Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome.Current Biology 5:1023–1029.

    Article  CAS  Google Scholar 

  • Raymond, M., andF. Rousset. 1995. An exact test for population differentiation.Evolution 49:1280–1283.

    Article  Google Scholar 

  • Roman, C. T., W. A. Niering, andR. S. Warren. 1984. Salt marsh vegetation changes in response to tidal restrictions.Environmental Management 8:141–150.

    Article  Google Scholar 

  • Saltonstall, K. 2001. A set of primers for amplification of noncoding regions of chloroplast DNA in the grasses.Molecular Ecology Notes 1:76–78.

    Article  CAS  Google Scholar 

  • Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed,Phragmites australis, into North America.Proceedings of the National Academy of Sciences U.S.A. 99:2445–2449.

    Article  CAS  Google Scholar 

  • Schneider, S., D. Roessli, andL. Excoffier. 2000. Arlequin version 2.000: A Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva, Switzerland.

    Google Scholar 

  • Soltis, D. E., M. A. Gitzendanner, D. D. Strenge, andP. S. Soltis. 1997. Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America.Plant Systematics and Evolution 206:353–373.

    Article  Google Scholar 

  • Stalter, R. 1975.Phragmites communis in South Carolina.Rhodora 77:159.

    Google Scholar 

  • Taberlet, P., L. Gielly, G. Pautou, andJ. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA.Plant Molecular Biology 17:1105–1109.

    Article  CAS  Google Scholar 

  • Templeton, A. R., K. A. Crandall, andC. F. Sing. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonucleases mapping and DNA sequence data. III. Cladogram estimation.Genetics 132:619–633.

    CAS  Google Scholar 

  • Zeidler, A., S. Schneider, C. Jung, A. E. Melchinger, andP. Dittrich. 1994. The use of DNA fingerprinting in ecological studies ofPhragmites australis (Cav.) Trin. ex Steudel.Botanica Acta 107:237–242.

    Google Scholar 

Sources of Unpublished Materials

  • Eggers, S. Personal Communication. U.S. Army Corps of Engineers, 190 5th Street East, St. Paul, Minnesota 55101-1638.

  • Hauber, D. Personal Communication. Department of Biological Sciences, Box 27, Loyola University, New Orleans, Louisiana 70118.

  • U.S. Department of Agriculture. 2002. Invaders Database System. http://invader.dbs.umt.edu/scripts/esrimap.dll?name =Noxious_map&Plant_Name=Phragmites+australis&submitl =Submit&Choice=1&CMD=Map.

  • Yuma Park Service Ranger. Personal Communication. Yuma Crossing National Heritage Area, 180 West First Street, Yuma, Arizon 85364.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saltonstall, K. Genetic variation among North American populations ofPhragmites australis: Implications for management. Estuaries 26, 444–451 (2003). https://doi.org/10.1007/BF02823721

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823721

Keywords

Navigation