Skip to main content
Log in

Mechanisms of marsh habitat alteration due toPhragmites: Response of young-of-the-year mummichog (Fundulus heteroclitus) to treatment forPhragmites removal

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

In recent decades, marshes naturally dominated bySpartina spp. have been replaced byPhragmites australis throughout the northeastern United States. We suggest that early in this invasion there was little effect on the fish fauna. As the invasion proceeds, the marsh surface habitat became more altered (i.e., elevated, flattened, reduced water-filled depressions, and reduced standing water), which resulted in a reduction of feeding, reproduction, and nursery function for fishes, especiallyFundulus spp. These potential changes in marsh habitat and function have resulted in numerous attempts to removePhragmites and restoreSpartina spp. To evaluate the response of marsh surface fishes toPhragmites treatment, we examined fish use in the brackish water reaches of Alloway Creek in the Delaware Bay estuary. ReferencePhragmites habitats were compared with referenceSpartina alterniflora-dominated habitats and sites treated (1996–1998) to removePhragmites to restore former vegetation (i.e., restored, now comprised of 100%Spartina). Fish were sampled with an array (n=9 at each site) of shallow pit traps (rectangular glass dishes, 27.5×17.5×3.7 cm). Small individuals (mean=17.5, 5–45 mm TL) dominated all pit trap collections. Fish abundance was highest at the restored (catch per unit effort [CPUE]=2.16) andSpartina (CPUE=0.81) sites with significantly lower values atPhragmites (CPUE=0.05) habitats. Samples were dominated by young-of-the-year mummichog,Fundulus heteroclitus (98% of total fish, n=631). The only other fish species collected was spotfin killifish,Fundulus luciae (2% of total catch, n=14), which was only present in restored andSpartina habitats. These observations suggest that the restored marsh is providing habitat (water-filled depressions on the marsh surface) for young-of-the-yearFundulus spp. These marshes are responding favorably to the restoration based on the much greater abundance of fish in restored versusPhragmites habitats and the overall similarity between restored andSpartina habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Able, K. W. 1999. Measures of juvenile fish habitat quality: Examples from a National Estuarine Research Reserve, p. 134–147.In L. R. Benaka (ed.), Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society, Symposium 22, Bethesda, Maryland.

  • Able, K. W. andM. P. Fahay. 1998. The First Year in the Life of Estuarine Fishes in the Middle Atlantic Bight. Rutgers University Press, New Brunswick, New Jersey.

    Google Scholar 

  • Able, K. W. andS. M. Hagan. 2000. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans.Estuaries, 23:633–646.

    Article  Google Scholar 

  • Able, K. W. andS. M. Hagan. 2003. Impact of common reed,Phragmites australis, on essential fish habitat: Influence on reproduction, embryological development, and larval abundance of mummichog (Fundulus heteroclitus).Estuaries 26:40–50.

    Article  Google Scholar 

  • Able, K. W., C. W. Talbot, andJ. K. Shisler. 1983 The spotfin killifish,Fundulus luciae, is common in New Jersey salt marshes.Bulletin of the New Jersey Academy of Science 28:7–11.

    Google Scholar 

  • Amsberry, L., M. A. Baker, P. J. Ewanchuk, andM. D. Bertness. 2000. Clonal integration and the expansion ofPhragmites australis.Ecological Applications 10:1110–1118.

    Article  Google Scholar 

  • Angradi, T. R., S. M. Hagan, andK. W. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh:Phragmites vs.Spartina.Wetlands 21:75–92.

    Article  Google Scholar 

  • Balon, E. K. 1990. Epigenesis of an epigeneticist: The development of some alternative concepts on the early ontogeny and evolution of fishes.Guelph Ichthological Review 1:1–48.

    Google Scholar 

  • Bart, D. andJ. M. Hartman. 2000. Environmental determinants ofPhragmites australis expansion in a New Jersey salt marsh: An experimental approach.OIKOS 89:59–69.

    Article  Google Scholar 

  • Beck, M. W., K. L. Heck, Jr.K. W. Able, D. Childers, D. Eggleston, B. M. Gillanders, B. Halpern, C. Hays, K. Hoshino, T. Minello, R. Orth, P. Sheridan, andM. Weinstein. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates.Bioscience 51:633–641.

    Article  Google Scholar 

  • Blossey, B. andJ. F. McCauley. 2000. A plan for developing biological control ofPhragmites australis in North America.Wetlands Journal 12:23–28.

    Google Scholar 

  • Byrne, D. M. 1978. Life history of the spotfin killifish,Fundulus luciae (Pisces: Cyprinodontidae), in Fox Creek Marsh, Virginia.Estuaries 4:211–227.

    Article  Google Scholar 

  • Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–273.

    Article  Google Scholar 

  • Collins, L. M., J. N. Collins, andL. B. Leopold. 1987. Geomorphic processes of an estuarine marsh: Preliminary results and hypotheses, p. 1049–1072.In V. Gardiner (ed.), International Geomorphology 1986, Part I. John Wiley and Sons, Ltd., New York.

    Google Scholar 

  • Copp, G. H. andV. Kovac. 1996. When do fish with indirect development become juvenile?Canadian Journal of Fisheries and Aquatic Sciences 53:746–752.

    Article  Google Scholar 

  • Deegan, L. A., J. E. Hughes, andR. A. Rountree. 2000. Salt marsh ecosystem support of marine transient species, p. 333–365.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Fell, P., S. P. Weissbach, D. A. Jones, M. A. Fallon, J. A. Zeppieri, E. K. Faison, K. A. Lennon, K. J. Newberry, andL. K. Reddington. 1998. Does invasion of oligohaline tidal marshes by reed grass,Phragmites australis (Cav.) Trin. ex Steud., affect the availability of prey sources for the mummichog.,Fundulus heteroclitus L.?Journal of Experimental marine Biology and Ecology 222:59–77.

    Article  Google Scholar 

  • Ferren, W. R., R. E. Good, R. Walker, andJ. Arsenault. 1981. Vegetation and flora of Hog Island, a brackish wetland in the Mullica River, New Jersey.Bartonia 48:1–10.

    Google Scholar 

  • Fuiman, L. A. andD. M. Higgs. 1997. Ontogeny, growth and the recruitment process, p. 225–250.In R. C. Chambers and E. A. Trippel (eds.), Early Life History and Recruitment in Fish Populations. Chapman and Hall, London, U.K.

    Google Scholar 

  • Gillianders, B. M., K. W. Able, J. A. Brown, D. B. Eggleston, andP. F. Sheridan. 2003. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: An important component of nurseries.Marine Ecology Progress Series 247:281–295.

    Article  Google Scholar 

  • Hanson, S. R., D. T. Osgood, andD. J. Yozzo. 2002. Nekton use of aPhragmites australis marsh on the Hudson River, New York, USA.Wetlands 22:326–337.

    Article  Google Scholar 

  • Hardy, Jr.,J. D. 1978. Development of Fishes of the Middle Atlantic Bight, Volume II. FWS/OBS-78/12. U.S. Department of the Interior, Washington, D.C..

    Google Scholar 

  • Havens, K. J., W. I. Priest, III, andH. Berquist. 1997. Investigation and long-term monitoring ofPhragmites australis within Virginia's constructed wetland sites.Environmental Management 21:599–605.

    Article  Google Scholar 

  • Hettler, Jr.,W. F. 1989. Nekton use of regularly-flooded saltmarsh cordgrass habitat in North Carolina, USA.Marine Ecology Progress Series 56:111–118.

    Article  Google Scholar 

  • Kneib, R. T. 1984. Patterns of utilization of the intertidal salt marsh by larvae and juveniles ofFundulus heteroclitus (Linnaeus) andFundulus luciae (Baird).Journal of Experimental Marine Biology and Ecology 83:41–51.

    Article  Google Scholar 

  • Kneib, R. T. 1997a. The role of tidal marshes in the ecology of estuarine nekton, p. 163–220.In A. D. Ansell, R. N. Gibson, M. Barnes (eds.), Oceanography and Marine Biology: An Annual Review. UCL Press, London, U.K..

    Google Scholar 

  • Kneib, R. T. 1997b. Early life stages of resident nekton in intertidal marshes.Estuaries 20:214–230.

    Article  Google Scholar 

  • Kneib, R. T. andA. E. Stiven. 1978. Growth, reproduction, and feeding ofFundulus heteroclitus (L.) on a North Carolina salt marsh.Journal of Experimental Marine Biology and Ecology 31: 121–140.

    Article  Google Scholar 

  • Marks, M., B. Lapin, andJ. Randall. 1994.Phragmites australis (P. communis): Threats, management and monitoring.Natural Areas Journal 4:285–294.

    Google Scholar 

  • Marteinsdottir, G. 1991. Early life history of the mummichog (Fundulus heteroclitus): Egg size variation and its significance in reproduction and survival of eggs and larvae. Ph.D. Dissertation, Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Meredith, W. H. andV. A. Lotrich. 1979. Production dynamics of a tidal creek population ofFundulus heteroclitus.Estuarine and Coastal Marine Science 8:99–118.

    Article  Google Scholar 

  • Meyer, D. L., J. M. Johnson, andJ. W. Gill. 2001. Comparison of nekton use ofPhragmites australis andSpartina alterniflora marshes in the Chesapeake Bay, USA.Marine Ecology Progress Series 209:71–84.

    Article  Google Scholar 

  • Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, andS. Findlay. 2000. A comparison ofPhragmites australis in freshwater and bracklish marsh environments in North America.Wetlands Ecology and Management 8:89–103.

    Article  CAS  Google Scholar 

  • Minello, T. J. 1999. Nekton densities in shallow estuarine habitats of Texas and Louisiana and the identification of essential fish habitat, p. 43–75.In L. R. Benaka (ed.), Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society, Symposium 22, Bethesda, Maryland.

  • Minello, T. J., K. W. Able, M. P. Weinstein, andC. G. Hays. 2003. Salt marshes as nurseries for nekton: Testing hypotheses on density, growth, and survival through meta-analysis.Marine Ecology Progress Series 246:39–59.

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA). 1996. Magnuson-Stevens Fishery Conservation and Management Act amended through 11 October 1996. National Marine Fisheries Service, National Ocenic and Atmospheric Administration Technical Memorandum NMFS-F/SPO-23. U.S. Department of Commerce, Washington, D.C.

    Google Scholar 

  • Niering, W. A. andR. S. Warren. 1977. Vegetation patterns and processes in New England salt marshes.Bioscience 30:301–307.

    Article  Google Scholar 

  • Osgood, D. T., D. Yozzo, R. Chambers, D. Jacobson, T. Hoffman, andJ. Wnek. 2003. Tidal hydrology and habitat utilization by resident nekton inPhragmites and non-Phragmites marshes.Estuaries 26:522–533.

    Article  Google Scholar 

  • Psuty, N. P., M. P. De Luca, R. Lathrop, K. W. Able, S. Whitney, andJ. F. Grassle. 1993. The Mullica River—Great Bay National Estuarine Research Reserve: A unique opportunity for research, preservation and management, p. 1557–1568.In O. T. Magoon, W. S. Wilson, H. Converse, and L. T. Tobin (eds.), Coastal Zone 1993, Volume 2. Proceedings of the Eighth Symposium on Coastal and Ocean Management. American Society of Civil Engineers, New York.

    Google Scholar 

  • Raichel, D. L., K. W. Able, andJ. M. Hartman. 2003. The influence ofPhragmites (common reed) on the distribution, abundance, and potential prey of a marsh resident fish in the Hackensack Meadowlands, New Jersey.Estuaries 26:511–521.

    Article  Google Scholar 

  • Roman, C. T., W. A. Niering, andR. S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction.Environmental Management 8:141–150.

    Article  Google Scholar 

  • Rooth, J. E. andJ. C. Stevenson. 2000. Sediment deposition inPhragmites australis communities: Implications for coastal areas threatened by rising sea level.Wetlands Ecology and Management 8:173–183.

    Article  Google Scholar 

  • Rooth, J. E., andL. Windham. 2000.Phragmites on death row: Is biocontrol really warranted?Wetland Journal 12:29–37.

    Google Scholar 

  • Rozas, L. P., C. C. McIvor, andW. E. Odum. 1988. Intertidal rivulets and creek banks: Corridors between tidal creeks and marshes.Marsh Ecology Progress Series 47:303–307.

    Article  Google Scholar 

  • Rozas, L. P. andW. E. Odum 1987, Use of tidal freshwater marshes by fishes and macrofaunal crustaceans along a marsh stream-order gradient.Estuaries 15:171–185.

    Google Scholar 

  • Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed,Phragmites australis, into North America.Proceedings National Academy of Sciences 99:2445–2449.

    Article  CAS  Google Scholar 

  • Talbot, C. W. andK. W. Able 1984. Composition and distribution of larval fishes in New Jersey high marshes.Estuaries 7:434–443.

    Article  Google Scholar 

  • Taylor, M. H., L. DiMichele, andG. J. Leach. 1977. Egg stranding in the life cycle of the mummichog,Fundulus heteroclitus (Pisces: Cyprinodontidae).Copeia 1979:291–297.

    Article  Google Scholar 

  • Teo S. L. H. andK. W. Able. 2003. Growth and production of the common mummichog,Fundulus heteroclitus, in a restored salt marsh.Estuaries 26:51–63.

    Article  Google Scholar 

  • Teo, S. L. H. and K. W. Able. In press. Habitat use and movement of the mummichog (Fundulus heteroclitus) in a restored salt marsh,Estuaries.

  • Tupper, M. andK. W. Able 2000. Movements and food habits of striped bass (Morone saxatilis) in Delaware Bay (USA) salt marshes: Comparison of a restored and a reference marsh.Marine Biology 137:1049–1058.

    Article  Google Scholar 

  • Valiela, I., J. E. Wright, J. M. Teal, andS. B. Volkmann. 1977. Growth, production, and energy transformations in the saltmarsh killifishFundulus heteroclitus.Marine Biology 40:135–144.

    Article  Google Scholar 

  • Wainright, S. C., M. P. Weinstein, K. W. Able, andC. A. Currin. 2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass (Spartina) and the common reed (Phragmites) to brackish marsh food webs.Marine Ecology Progress Series 200:77–91.

    Article  CAS  Google Scholar 

  • Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, G. C. Riling, andR. A. Fertik. 2001. Rates, patterns and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River.Estuaries 24:90–107.

    Article  Google Scholar 

  • Weinstein, M. P. andJ. H. Balletto. 1999. Does the common reed,Phragmites australis affect essential fish habitat?Estuaries 22:63–72.

    Article  Google Scholar 

  • Weinstein, M. P., J. H. Balletto, J. M. Teal, andD. F. Ludwig. 1997. Success criteria and adaptive management for a largescale wetland restoration project.Wetlands Ecology and Management 4:111–127.

    Article  Google Scholar 

  • Weinstein M. P., K. R. Phillip, andP. Goodwin 2000. Catastrophes, near-catastrophes, and the bounds of expectation: Success criteria for macroscale marsh restoration, p. 777–804.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Weinstein, M. P., J. M. Teal, J. H. Balletto, andK. A. Strait. 2001. Restoration principles emerging from one of the world's largest tidal marsh restoration projects.Wetland Ecology and Management 9:387–407.

    Article  Google Scholar 

  • Wiegert, R. G. andL. R. Pomeroy. 1981. The salt-marsh ecosystem: A synthesis, p. 219–230.In L. R. Pomeroy and R. G. Weigert (eds.), The Ecology of a Salt Marsh. Springer-Verlag, New York.

    Google Scholar 

  • Windham, L. 1995. Effects ofPhragmites australis invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey. Masters Thesis, Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Windham, L. 1999. Microscale spatial distribution ofPhragmites australis (common reed) invasion intoSpartina patens (salt hay)-dominated communities in brackish tidal marsh.Biological Invasions 1:137–148.

    Article  Google Scholar 

  • Windham, L. andR. Lathrop. 1999. Effects ofPhragmites australis (common reed) invasion on above-ground biomass and soil properties in brackish, tidal marsh of the Mullica River, New Jersey.Estuaries 22:927–935.

    Article  Google Scholar 

  • Zar, J. H. 1984. Biostatistical Analysis, 2nd edition. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

Sources of Unpublished Materials

  • Nemerson, D. M. unpublished data. National Aquarium in Baltimore, Pier 3/501 East Pratt Street, Baltimore, Maryland 21202-3194.

  • Sakowicz, G. P. unpublished data Rutgers University Marine Field Station, 800 Great Bay Boulevard, Tuckerton, New Jersey 08087.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. W. Able.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Able, K.W., Hagan, S.M. & Brown, S.A. Mechanisms of marsh habitat alteration due toPhragmites: Response of young-of-the-year mummichog (Fundulus heteroclitus) to treatment forPhragmites removal. Estuaries 26, 484–494 (2003). https://doi.org/10.1007/BF02823725

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823725

Keywords

Navigation