Skip to main content
Log in

Identification and characterization of a novel bifunctional Δ1215-fatty acid desaturase gene from Rhodosporidium kratochvilovae

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To elucidate the biosynthesis pathway of linoleic acid and α-linolenic acid in Rhodosporidium kratochvilovae YM25235 and investigate the correlation of polyunsaturated fatty acids with its cold adaptation.

Results

A 1341 bp cDNA sequence, designated as RKD12, putatively encoding a Δ12-desaturase was isolated from YM25235. Sequence analysis indicated that this sequence comprised a complete ORF encoding 446 amino acids of 50.6 kDa. The encoded amino acid sequence shared higher similarity to known fungal Δ12-desaturases that are characteristic of three conserved histidine-rich motifs. RKD12 was further transformed into Saccharomyces cerevisiae INVScl for functional characterization. Fatty acid analysis showed the yeast transformants accumulated two new fatty acids: linoleic acid and α-linolenic acid. Furthermore, mRNA expression level of RKD12 and the content of linoleic acid and α-linolenic acid were increased significantly with the culture temperature downshift from 30 to 15 °C, which might be helpful for the cold adaptation of YM25235.

Conclusion

RKD12 is a novel bifunctional ∆12/∆15-desaturase gene, and the increased RKD12 mRNA expression level and PUFAs content at low temperature might be helpful for the cold adaptation of YM25235.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Aitzetmuller K, Tsevegsuren N (1994) Seed fatty acids, «Front-End»-desaturases and chemotaxonomy—a case study in the Ranunculaceae. J Plant Physiol 143:538–543

    Article  Google Scholar 

  • Alonso DL, Garcia-Maroto F, Rodriguez-Ruiz J, Garrido JA, Vilches MA (2003) Evolution of the membrane-bound fatty acid desaturases. Biochem Syst Ecol 31:1111–1124

    Article  Google Scholar 

  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    Article  CAS  PubMed  Google Scholar 

  • Bucek A, Matouskova P, Sychrova H, Pichova I, Hruskova-Heidingsfeldova O (2014) Δ12-fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids. PLoS One 9:e93322

    Article  PubMed  PubMed Central  Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14

    Article  CAS  PubMed  Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol 50:631–642

    CAS  PubMed  Google Scholar 

  • Damude HG, Zhang HX, Farrall L, Ripp KG, Tomb JF, Hollerbach D, Yadav NS (2006) Identification of bifunctional Δ12/ω3 fatty acid desaturases for improving the ratio of ω3 to ω6 fatty acids in microbes and plants. Proc Natl Acad Sci USA 103:9446–9451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elble R (1992) A simple and efficient procedure for transformation of yeasts. Biotechniques 13:18–20

    CAS  PubMed  Google Scholar 

  • Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15:401–409

    Article  CAS  PubMed  Google Scholar 

  • Hallahan B, Garland MR (2005) Essential fatty acids and mental health. Brit J Psychiatr 186:275–277

    Article  Google Scholar 

  • Hoffmann M, Hornung E, Busch S, Kassner N, Ternes P, Braus GH, Feussner I (2007) A small membrane-peripheral region close to the active center determines regioselectivity of membrane-bound fatty acid desaturases from Aspergillus nidulans. J Biol Chem 282:26666–26674

    Article  CAS  PubMed  Google Scholar 

  • Huang YS, Chaudhary S, Thurmond JM, Bobik EG Jr, Yuan L, Chan GM, Kirchner SJ, Mukerji P, Knutzon DS (1999) Cloning of Δ12- and Δ6-desaturases from Mortierella alpina and recombinant production of γ-linolenic acid in Saccharomyces cerevisiae. Lipids 34:649–659

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto J, Kurihara T, Yamamoto K, Nagayasu M, Tani Y, Mihara H, Hosokawa M, Baba T, Sato SB, Esaki N (2009) Eicosapentaenoic acid plays a beneficial role in membrane organization and cell division of a cold-adapted bacterium, Shewanella livingstonensis Ac10. J Bacteriol 191:632–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Zhao ZB, Bai FW (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41:312–317

    Article  Google Scholar 

  • Libisch B, Michaelson LV, Lewis MJ, Shewry PR, Napier JA (2000) Chimeras of Δ6-fatty acid and Δ8-sphingolipid desaturases. Biochem Biophys Res Commun 279:779–785

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1394:3–15

    Article  CAS  PubMed  Google Scholar 

  • Meesapyodsuk D, Qiu X (2012) The front-end desaturase: structure, function, evolution and biotechnological use. Lipids 47:227–237

    Article  CAS  PubMed  Google Scholar 

  • Meesapyodsuk D, Reed DW, Covello PS, Qiu X (2007) Primary structure, regioselectivity, and evolution of the membrane-bound fatty acid desaturases of Claviceps purpurea. J Biol Chem 282:20191–20199

    Article  CAS  PubMed  Google Scholar 

  • Ntambi JM, Bene H (2001) Polyunsaturated fatty acid regulation of gene expression. J Mol Neurosci 16:273–278 discussion 279-284

    Article  CAS  PubMed  Google Scholar 

  • Passorn S, Laoteng K, Rachadawong S, Tanticharoen M, Cheevadhanarak S (1999) Heterologous expression of Mucor rouxii Δ12-desaturase gene in Saccharomyces cerevisiae. Biochem Biophys Res Commun 263:47–51

    Article  CAS  PubMed  Google Scholar 

  • Pereira SL, Leonard AE, Mukerji P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandin Leukot Essent 68:97–106

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakai H, Kajiwara S (2005) Cloning and functional characterization of a Δ12 fatty acid desaturase gene from the basidiomycete Lentinula edodes. Mol Genet Genom 273:336–341

    Article  CAS  Google Scholar 

  • Sakamoto T, Los DA, Higashi S, Wada H, Nishida I, Ohmori M, Murata N (1994) Cloning of ω3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation. Plant Mol Biol 26:249–263

    Article  CAS  PubMed  Google Scholar 

  • Sayanova O, Haslam R, Guschina I, Lloyd D, Christie WW, Harwood JL, Napier JA (2006) A bifunctional Δ12, Δ15-desaturase from Acanthamoeba castellanii directs the synthesis of highly unusual n-1 series unsaturated fatty acids. J Biol Chem 281:36533–36541

    Article  CAS  PubMed  Google Scholar 

  • Sprecher H, Luthria DL, Mohammed BS, Baykousheva SP (1995) Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. J Lipid Res 36:2471–2477

    CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu WC, Cook-Johnson RJ, James MJ, Muhlhausler BS, Gibson RA (2010) Omega-3 long chain fatty acid synthesis is regulated more by substrate levels than gene expression. Prostaglandins Leukot Essent 83:61–68

    Article  CAS  Google Scholar 

  • Uemura H (2012) Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Appl Microbiol Biotechnol 95:1–12

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Gombos Z, Murata N (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347:200–203

    Article  CAS  PubMed  Google Scholar 

  • Wang MX, Chen HQ, Gu ZN, Zhang H, Chen W, Chen YQ (2013) ω3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use. Appl Microbiol Biotechnol 97:10255–10262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Tsuda S, Nishimura H, Honda Y, Watanabe T (2010) Characterization of a Δ12-fatty acid desaturase gene from Ceriporiopsis subvermispora, a selective lignin-degrading fungus. Appl Microbiol Biotechnol 87:215–224

    Article  CAS  PubMed  Google Scholar 

  • Wei D, Li M, Zhang X, Ren Y, Xing L (2004) Identification and characterization of a novel Δ12-fatty acid desaturase gene from Rhizopus arrhizus. FEBS Lett 573:45–50

    Article  CAS  PubMed  Google Scholar 

  • Wei DS, Li MC, Zhang XX, Zhou H, Xing LJ (2006) A novel Δ12-fatty acid desaturase gene from methylotrophic yeast Pichia pastoris GS115. Acta Biochim Pol 53:753–759

    CAS  PubMed  Google Scholar 

  • Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92:222–229

    Article  CAS  Google Scholar 

  • Zhang S, Sakuradani E, Ito K, Shimizu S (2007) Identification of a novel bifunctional Δ12/Δ15 fatty acid desaturase from a basidiomycete, Coprinus cinereus TD#822-2. FEBS Lett 581:315–319

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Zhuo L, Mulan J, Xia W, YangminZ G, Yinbo Z, Fenghong H (2013) Clone and identification of bifunctional Δ12/Δ15 fatty acid desaturase LKFAD15 from Lipomyces kononenkoae. Food Sci Biotechnol 22:573–576

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Professor Shaolan Li in Yunnan Institute of Microbiology, Yunnan University, for her kind present of Rhodosporidium kratochvilovae strain YM25235. This study was supported by the National Natural Science Foundation of China (Grant Nos. 31160016 and 31260034).

Supporting Information

Supplementary Figure 1—Sequence alignment of deduced amino acids of the R. kratochvilovae Δ12-desaturase (RAD12) with the Δ12-desaturases from Mortierella alpina IS-4 (MAD12), Amylomyces rouxii (ARD12) and Komagataella pastoris (KPD12).

Supplementary Figure 2—GC analysis of fatty acid compositions from YM25235 grown at 28 °C and 15 °C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 483 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., He, S., Ji, X. et al. Identification and characterization of a novel bifunctional Δ1215-fatty acid desaturase gene from Rhodosporidium kratochvilovae . Biotechnol Lett 38, 1155–1164 (2016). https://doi.org/10.1007/s10529-016-2090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2090-7

Keywords

Navigation