Skip to main content
Log in

Clone and identification of bifunctional Δ12/Δ15 fatty acid desaturase LKFAD15 from Lipomyces kononenkoae

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In modern diet of human being, the ω-6/ω-3 ratio of dietary fatty acid was shifted much towards ω-6 series. In this work, a fatty acid desaturase (FAD) gene lkfad15 was cloned and identified from oleaginous yeast Lipomyces kononenkoae. Function analysis results shown that LKFAD15 is a novel Δ12/Δ15 bifunctional FAD which could not only produce linoleic acid and α-linolenic acid use just oleic acid as substrate but also adjust the ω- 6/ω-3 fatty acids ratio to the WHO recommended ratio. Phylogenetic analysis of LKFAD15 suggested it is a specific intermediate product of gene evolution derives from independent gene duplication events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hwang D. Fatty acids and immune responses — A new perspective in searching for clues to mechanism. Annu. Rev. Nutr. 20: 431–456 (2000)

    Article  CAS  Google Scholar 

  2. James MJ, Gibson RA, Cleland LG. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin Nutr. 71: 343S–348S (2000)

    CAS  Google Scholar 

  3. Los DA, Murata N. Structure and expression of fatty acid desaturases. Biochim. Biophys. Acta 1394: 3–15 (1998)

    Article  CAS  Google Scholar 

  4. Simopoulos AP. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 70: 560S–569S (1999)

    CAS  Google Scholar 

  5. Simopoulos AP. The importance of the ratio of ω-6/ω-3 essential fatty acids. Biomed. Pharmacother. 56: 365–379 (2002)

    Article  CAS  Google Scholar 

  6. Nishida C, Uauy R, Kumanyika S, Shetty P. The joint WHO/FAO expert consultation on diet, nutrition, and the prevention of chronic diseases: Process, product, and policy implications. Public Health Nutr. 7: 245–250 (2004)

    Google Scholar 

  7. Hussein N, Ah-Sing E, Wilkinson P, Leach C, Griffin BA, Millward DJ. Long-chain conversion of [13C]linoleic acid and α-linolenic acid in response to marked changes in their dietary intake in men. J. Lipid Res. 46: 269–280 (2005)

    Article  CAS  Google Scholar 

  8. Arts MT, Ackman RG, Holub BJ. “Essential fatty acids” in aquatic ecosystems: A crucial link between diet and human health and evolution. Can. J. Fish Aquat. Sci. 58: 122–137 (2001)

    Article  CAS  Google Scholar 

  9. Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43: 649–656 (2007)

    Article  CAS  Google Scholar 

  10. ORF Finder Available from: http://www.ncbi.nlm.nih.gov/projects/gorf/. Accessed June 13, 2011.

  11. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH. CDD: A conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39: D225–D229 (2011)

    Article  CAS  Google Scholar 

  12. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739 (2011)

    Article  CAS  Google Scholar 

  13. Wan X, Zhang Y, Wang P, Huang F, Chen H, Jiang M. Production of gamma-linolenic acid in Pichia pastoris by expression of a Δ-6 desaturase gene from Cunninghamella echinulata. J. Microbiol. Biotechn. 19: 1098–1102 (2009)

    Article  CAS  Google Scholar 

  14. Sayanova O, Haslam R, Guschina I, Lloyd D, Christie WW, Harwood JL, Napier JA. A bifunctional Δ 12, Δ15- desaturase from Acanthamoeba castellanii directs the synthesis of highly unusual n-1 series unsaturated fatty acids. J. Biol. Chem. 281: 36533–36541 (2006)

    Article  CAS  Google Scholar 

  15. Damude HG, Zhang H, Farrall L, Ripp KG, Tomb JF, Hollerbach D, Yadav NS. Identification of bifunctional Δ12/ω3 fatty acid desaturases for improving the ratio of ω3 to ω6 fatty acids in microbes and plants. P. Natl. Acad. Sci. USA 103: 9446–9451 (2006)

    Article  CAS  Google Scholar 

  16. Doolittle WF. You are what you eat: A gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 14: 307–311 (1998)

    Article  CAS  Google Scholar 

  17. Wei DSh, Li MCh, Zhang XX, Zhou H, Xing LJ. A novel Δ12-fatty acid desaturase gene from methylotrophic yeast Pichia pastoris GS115. Acta Biochim. Pol. 53: 753–759 (2006)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Fenghong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Z., Zhuo, L., Mulan, J. et al. Clone and identification of bifunctional Δ12/Δ15 fatty acid desaturase LKFAD15 from Lipomyces kononenkoae . Food Sci Biotechnol 22, 573–576 (2013). https://doi.org/10.1007/s10068-013-0116-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0116-7

Keywords

Navigation