Skip to main content
Log in

Cloning of ω3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation

  • Mini-reviews
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cyanobacteria respond to a decrease in temperature by desaturating fatty acids of membrane lipids to compensate for the decrease in membrane fluidity. Among various desaturation reactions in cyanobacteria, the desaturation of the ω3 position of fatty acids is the most sensitive to the change in temperature. In the present study, we isolated a gene, designated desB, for the ω3 desaturase from the cyanobacterium, Synechocystis sp. PCC 6803. The desB gene encodes a protein a 359 amino-acid residues with molecular mass of 41.9 kDa. The desB gene is transcribed as a monocistronic operon that produced a single transcript of 1.4 kb. The level of the desB transcript in cells grown at 22°C was 10 times higher than that in cells grown at 34°C. In order to manipulate the fatty-acid unsaturation of membrane lipids, the desB gene in Synechocystis sp. PCC 6803 was mutated by insertion of a kanamycin-resistance gene cartridge. The resultant mutant was unable to desaturate fatty acids at the ω3 position. The desA gene, which encodes the Δ12 desaturase of Synechocystis sp. PCC 6803, and the desB gene were introduced into Synechococcus sp. PCC 7942. Whilst the parent cyanobacterium can only desaturate membrane lipids at the Δ9 position of fatty acids, the resultant transformant was able to desaturate fatty acids of membrane lipids at the Δ9, Δ12 and ω3 positions. These results confirm the function of the desB gene and demonstrate that it is possible to genetically manipulate the fatty-acid unsaturation of membrane lipids in cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR: Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258: 1353–1355 (1992).

    Google Scholar 

  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology. Wiley, New York (1987).

    Google Scholar 

  3. Beck E, Ludwig G, Auerswald EA, Reiss B, Schaller H: Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19: 327–336 (1982).

    Google Scholar 

  4. Cahoon EB, Shanklin J, Ohlrogge JB: Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc Natl Acad Sci USA 89: 11184–11188 (1992).

    Google Scholar 

  5. Golden SS, Brusslan J, Haselkorn R: Genetic engineering of the cyanobacterial chromosome. Meth Enzymol 153: 215–231 (1987).

    Google Scholar 

  6. Gombos Z, Wada H, Murata N: Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc Natl Acad Sci USA 89: 9959–9963 (1992).

    Google Scholar 

  7. Harwood JL: Fatty acid metabolism. Annu Rev Plant Physiol 39: 101–138 (1988).

    Google Scholar 

  8. Haselkorn R: Genetic systems in cyanobacteria. Meth Enzymol 204: 418–430 (1991).

    Google Scholar 

  9. Higashi S, Murata N: An in vivo study on substrate specificities of acyl-lipid desaturases and acyltransferase in lipid synthesis in Synechocystis PCC6803. Plant Physiol 102: 1275–1278 (1993).

    Google Scholar 

  10. Iba K, Gibson S, Nishiuchi T, Fuse T, Nishimura M, Arondel V, Hugly S, Somerville C: A gene encoding a chloroplast ω-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J Biol Chem 268: 24099–24105 (1993).

    Google Scholar 

  11. Jaworski JG: Biosynthesis of monoenoic and polyenoic fatty acids. In: Stumpf PK (ed) The Biochemistry of Plants, vol. 9, pp. 159–174. Academic Press, Orlando, FL (1987).

    Google Scholar 

  12. Kearns EV, Hugly S, Somerville CR: The role of cytochrome b 5 in Δ12 desaturation of oleic acid by microsomes of safflower (Carthamus tinctorius L.). Arch Biochem Biophys 284: 431–436 (1991).

    Google Scholar 

  13. Knutzon DS, Scherer DE, Schreckengost WE: Nucleotide sequence of a complementary DNA clone encoding stearoyl-acyl carrier protein desaturase from caster bean, Ricinus communis. Plant Physiol 96: 344–345 (1991).

    Google Scholar 

  14. Knutzon DS, Thompson GA, Radke SE, Johnson WB, Knauf VC, Kridl JC: Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci USA 89: 2624–2628 (1992).

    Google Scholar 

  15. Kuhlemeier CJ, Thomas AAM, van der Ende A, van Leen RW, Borrias WE, van den Hondel CAMJJ, van Arkel GA: A host-vector system for gene cloning in the cyanobacterium Anacystis nidulans R2. Plasmid 10: 156–163 (1983).

    Google Scholar 

  16. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132 (1982).

    Google Scholar 

  17. Los D, Horvath I, Vigh L, Murata N: The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803. FEBS Lett 318: 57–60 (1993).

    Google Scholar 

  18. McKeon T, Stumpf PK: Purification and characterization of the stearoyl-acyl carrier protein desaturase and acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J Biol Chem 257: 12141–12147 (1982).

    Google Scholar 

  19. Murata N, Nishida I: Lipids of blue-green algae (cyanobacteria). In: Stumpf PK (ed) The Biochemistry of Plants, vol. 9, pp. 315–347. Academic Press, Orlando, FL (1987).

    Google Scholar 

  20. Nishida I, Beppu T, Matsuo T, Murata N: Nucleotide sequence of a cDNA clone encoding a precursor to stearoyl-(acyl-carrier-protein) desaturase from spinach, Spinacia oleracea. Plant Mol Biol 19: 711–713 (1992).

    Google Scholar 

  21. Ntambi JM, Buhrow SA, Kaestner KH, Christy RJ, Sibley E, KellyJr. TJ, Lane D: Differentiation-induced gene expression in 3T3-L1 preadipocytes: Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 263: 17291–17300 (1988).

    Google Scholar 

  22. Omata T, Carlson TJ, Ogawa T, Pierce J: Sequencing and modification of the gene encoding the 42-kilodalton protein in the cytoplasmic membrane of Synechococcus PCC7942. Plant Physiol 93: 305–311 (1990).

    Google Scholar 

  23. Qoronfleh MW, Debouck C, Keller J: Identification and characterization of novel low-temperature-inducible promoters of Escherichia coli. J Bact 174: 7902–7909 (1992).

    Google Scholar 

  24. Reddy AS, Nuccio ML, Gross LM, Thomas TL: Isolation of a 262–1-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC6803 by gain-of-function expression in Anabaena sp. strain PCC7120. Plant Mol Biol 27: 283–300 (1993).

    Google Scholar 

  25. Rosenberg M, Court D: Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13: 319–353 (1979).

    Google Scholar 

  26. Sakamoto T, Wada H, Nishida I, Ohmori M, Murata N: Identification of conserved domains in the Δ12 desaturases of cyanobacteria. Plant Mol Biol 24: 643–650 (1994).

    Google Scholar 

  27. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    Google Scholar 

  28. Sato N, Murata N: Lipid biosynthesis in the blue-green alga, Anabaena variabilis. II. Fatty acids and lipid molecular species. Biochim Biophys Acta 710: 279–289 (1982).

    Google Scholar 

  29. Sato N, Seyama Y, Murata N: Lipid-linked desaturation of plamitic acid in monogalactosyl diacylglycerol in the blue-green alga (cyanobacterium) Anabaena variabilis studies in vivo. Plant Cell Physiol 27: 819–835 (1986).

    Google Scholar 

  30. Schmidt H, Heinz E: Involvement of ferredoxin in desaturation of lipid-bound oleate in chloroplasts. Plant Physiol 94: 214–220 (1990).

    Google Scholar 

  31. Shanklin J, Somerville C: Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci USA 88: 2510–2514 (1991).

    Google Scholar 

  32. Shanklin J, Mullins C, Somerville C: Sequence of a complementary DNA from Cucumis sativus L. encoding the stearoyl-acyl carrier protein desaturase. Plant Physiol 97: 467–468 (1991).

    Google Scholar 

  33. Slabas AR, Fawcett T: The biochemistry and molecular biology of plant lipid biosynthesis. Plant Mol Biol 19: 169–191 (1992).

    Google Scholar 

  34. Smith MA, Cross AR, Jones OTG, Griffiths WT, Stymne S, Stobart K: Electron-transport components of the 1-acyl-2-oleoyl-sn-glycerol-3-phosphocholine Δ12-desaturase (Δ12-desaturase) in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons. Biochem J 272: 23–29 (1990).

    Google Scholar 

  35. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G: Purification and properties of unicellular blue-green alga (order Chroococcales). Bact Rev 35: 171–205 (1971).

    Google Scholar 

  36. Stukey JE, McDonough VM, Martin CE: The OLE1 gene of Saccharomyces cerevisiae encodes the Δ9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 265: 20144–20149 (1990).

    Google Scholar 

  37. Stumpf PK: Plants, fatty acids, compartments. Trends Biochem Sci 6: 173–176 (1981).

    Google Scholar 

  38. Thiede MA, Ozols J, Strittmatter P: Construction and sequence of cDNA for rat liver stearyl coenzyme A desaturase. J Biol Chem 261: 13230–13235 (1986).

    Google Scholar 

  39. Thompson GA, Scherer DE, Aken SF-V, Kenny JW, Young HL, Shintani DK, Kridl JC, Knauf VC: Primary structures of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc Natl Acad Sci USA 88: 2578–2582 (1991).

    Google Scholar 

  40. Vigh L, Los DA, Horvath I, Murata N: The primary signal in the biological perception of temperature: Pdcatalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci USA 90: 9090–9094 (1993).

    Google Scholar 

  41. Wada H, Murata N: Synechocystis PCC6803 mutants defective in desaturation of fatty acids. Plant Cell Physiol 30: 971–978 (1989).

    Google Scholar 

  42. Wada H, Murata N: Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC6803. Plant Physiol 92: 1062–1069 (1990).

    Google Scholar 

  43. Wada H, Gombos Z, Murata N: Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347: 200–203 (1990).

    Google Scholar 

  44. Wada H, Gombos Z, Sakamoto T, Murata N: Genetic manipulation of the extent of desaturation of fatty acids in membrane lipids in the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol 33: 535–540 (1992).

    Google Scholar 

  45. Wada H, Schmidt H, Heinz E, Murata N: In vitro ferredoxin-dependent desaturation of fatty acids in cyanobacterial thylakoid membranes. J Bact 175: 544–547 (1993).

    Google Scholar 

  46. Wada H, Avelange-Macherel M-H, Murata N: The desA gene of the cyanobacterium Synechocystis sp. strain PCC6803 is the structural gene for Δ12 desaturase. J Bact 175: 6056–6058 (1993).

    Google Scholar 

  47. Wada H, Gombos Z, Murata N: The contribution of membrane-lipids to the temperature stress tolerance studied by transformation with the desA gene. Proc Natl Acad Sci USA, in press (1994).

  48. Williams JGK: Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Meth Enzymol 167: 766–778 (1988).

    Google Scholar 

  49. Williams JGK, Szalay AA: Stable integration of foreign DNA into the chromosome of the cyanobacterium Synechococcus R2. Gene 24: 37–51 (1983).

    Google Scholar 

  50. Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Perez-Grau L, Kinney AJ, Hitz WD, Booth JR, Schweiger B, Stecca KL, Allen SM, Blackwell M, Reiter RS, Carlson TJ, Russell SH, Feldman KA, Pierce J, Browse J: Cloning of higher plant ω-3 fatty acid desaturases. Plant Physiol 103: 466–476 (1993).

    Google Scholar 

  51. Yamamoto KT: Further characterization of auxin-regulated mRNAs in hypocotyl sections of mung bean [Vigna radiata (L.) Wilcezek]: Sequence homology to genes for fatty-acid desaturases and atypical late-embryogenesis-abundant protein, and the mode of expression of the mRNAs. Planta 192: 359–364 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, T., Los, D.A., Higashi, S. et al. Cloning of ω3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation. Plant Mol Biol 26, 249–263 (1994). https://doi.org/10.1007/BF00039536

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039536

Key words

Navigation