Skip to main content
Log in

Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is one of the major fungal diseases of canola. To develop resistance against this fungal disease, the chit42 from Trichoderma atroviride with chitin-binding domain and polygalacturonase-inhibiting protein 2 (PG1P2) of Phaseolus vulgaris were co-expressed in canola via Agrobacterium-mediated transformation.

Results

Stable integration and expression of transgenes in T0 and T2 plants was confirmed by PCR, Southern blot and RT-PCR analyses. Chitinase activity and PGIP2 inhibition were detected by colorimetric and agarose diffusion assay in transgenic lines but not in untransformed plants. The crude proteins from single copy transformant leaves having high chitinase and PGIP2 activity (T16, T8 and T3), showed up to 44 % inhibition of S. sclerotiorum hyphal growth. The homozygous T2 plants, showing inheritance in Mendelian fashion (3:1), were further evaluated under greenhouse conditions for resistance to S. sclerotiorum. Intact plants contaminated with mycelia showed resistance through delayed onset of the disease and restricted size and expansion of lesions as compared to wild type plants.

Conclusions

Combined expression of chimeric chit42 and pgip2 in Brassica napus L. provide subsequent protection against SSR disease and can be helpful in increasing the canola production in Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aghajani MA, Safaie N, Alizadeh A (2013) Yield loss assessment of sclerotinia stem rot of canola in Iran. J Crop Prot 2:229–240

    Google Scholar 

  • Akhgari AB, Motallebi M, Zamani MR (2012) Bean polygalacturonase-inhibiting protein expressed in transgenic Brassica napus inhibits polygalacturonase from its fungal pathogen Rhizoctonia solani. Plant Protect Sci 1:1–9

    Google Scholar 

  • Benedetti M, Leggio C, Federici L, De Lorenzo G, Pavel NV, Cervone F (2011) Structural resolution of the complex between a fungal polygalacturonase and a plant polygalacturonase-inhibiting protein by small-angle X-ray scattering. Plant Physiol 157:599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casasoli M, Federici L, Spinelli F, Di Matteo A, Vella N, Scaloni F, Fernandez-Recio J, Cervone F, De Lorenzo G (2009) Integration of evolutionary and desolvation energy analysis identifies functional sites in a plant immunity protein. Proc Natl Acad Sci USA 106:7666–7671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2012) Genetic engineering of crop plants for fungal resistance: role of antifungal genes. Biotechnol Lett 34:995–1002

    Article  PubMed  Google Scholar 

  • Chhikara S, Dhankher OP, Chaudhury D, Jaiwal PK (2012) Combined expression of a barley class II chitinase and type I ribosome inactivating protein in transgenic Brassica juncea provides protection against Alternaria brassicae. Plant Cell Tissue Organ Cult 108:83–89

    Article  CAS  Google Scholar 

  • Cho HS, Cao J, Ren JP, Earle ED (2001) Control of lepidopteron insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis cry1C gene. Plant Cell Rep 20:1–7

    Article  CAS  Google Scholar 

  • Cletus J, Vashisht D, Balasubramanian V, Sakthivel N (2013) Transgenic expression of plant chitinases to enhance disease resistance. Biotechnol Lett 35:1719–1732

    Article  CAS  PubMed  Google Scholar 

  • Cogbill S, Faulcon T, Jones G, McDaniel M, Harmon G, Blackmon R, Young M (2010) Adventitious shoots regeneration from cotyledonary explants of rapid-cycling fast plants of Brasscia rapa L. Plant Cell Tissue Organ Cult 101:127–133

    Article  Google Scholar 

  • Das DK, Rahman A (2012) Expression of a rice chitinase gene enhances antifungal response in transgenic litchi (cv. Bedana). Plant Cell Tissue Organ Cult 109:315–325

    Article  CAS  Google Scholar 

  • Das B, Goswami L, Ray S, Ghosh S, Bhattacharyya S, Das S, Majumder AL (2006) Agrobacterium-mediated transformation of Brassica juncea with a cyanobacterial (Synechocystis PCC6803) delta-6 desaturase gene leads to production of gamma-linolenic acid. Plant Cell Tissue Organ Cult 86:219–231

    Article  CAS  Google Scholar 

  • Dong X, Ji R, Guo X, Foster SJ, Chen H, Dong C, Liu Y, Hu Q, Liu S (2008) Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Planta 228:331–340

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1991) Isolation of plant DNA from fresh tissue plant. Plant Mol Biol 9:340–342

    Article  Google Scholar 

  • Ferrari S, Sella L, Janni M, De Lorenzo G, Favaron F, D’Ovidio R (2012) Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. Plant Biol 14:31–38

    Article  CAS  PubMed  Google Scholar 

  • Harighi MJ, Motallebi M, Zamani MR (2006) Antifungal activity of heterologous expressed chitinase 42 (Chit42) from Trichoderma atroviride PTCC5220. Iran J Biotech 4:95–103

    CAS  Google Scholar 

  • Hegedus DD, Li R, Buchwaldt L, Parkin I, Whitwill S, Coutu C, Bekkaoui D, Rimmer SR (2008) Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment. Planta 228:241–253

    Article  CAS  PubMed  Google Scholar 

  • Iqbal MM, Ali S, Iqbal J, Asif MA, Nazir F, Zafar Y, Ali GM (2012) Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Mol Biotechnol 50:129–136

    Article  CAS  PubMed  Google Scholar 

  • Janni M, Sella L, Favaron F, Blechl AE, De Lorenzo G, D’Ovidio R (2008) The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant Microb 21:171–177

    Article  CAS  Google Scholar 

  • Kahrizi D, Salmanian AH, Afshari A, Moieni A, Mousavi A (2007) Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (K12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Rep 26:95–104

    Article  CAS  PubMed  Google Scholar 

  • Kojima M, Yoshikawa T, Ueda M, Nonomura T, Matsuda Y, Toyoda H, Miyatake K, Arai M, Fukamizo T (2005) Family 19 chitinase from Aeromonas sp. No. 10S-24: role of chitin-binding domain in the enzymatic activity. J Biochem 137:235–242

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Liu L, Jiang X, Hou J, Fu K, Zhou F, Chen J (2010) Agrobacterium-mediated transformation as a useful tool for the molecular genetics study of the phytopathogen Curvularia lunata. Eur J Plant Pathol 126:363–371

    Article  CAS  Google Scholar 

  • Liu H, Guo X, Naeem MS, Liu D, Xu L, Zhang W, Tang G, Zhou W (2011) Transgenic Brassica napus L. lines carrying a two gene construct demonstrate enhanced resistance against Plutella xylostella and Sclerotinia sclerotiorum. Plant Cell Tiss Organ Cult 106:143–151

    Article  Google Scholar 

  • Matroodi S, Motallebi M, Zamani MR, Moradyar M (2013) Designing a new chitinase with more chitin binding and antifungal activity. World J Microbiol Biotechnol 29:1517–1523

    Article  CAS  PubMed  Google Scholar 

  • Mohammadzadeh R, Zamani MR, Motallebi M, Norouzi P, Jourabchi E, Benedetti M, Lorenzo GD (2012) Agrobacterium tumefaciens-mediated introduction of polygalacturonase inhibiting protein 2 gene (PvPGIP2) from Phaseolus vulgaris into sugar beet (Beta vulgaris L.). Aust J Crop Sci 6:1290–1297

    CAS  Google Scholar 

  • Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238–242

    Article  CAS  PubMed  Google Scholar 

  • Solgi T, Moradyar M, Zamani MR, Motallebi M (2015) Transformation of canola by Chit33 gene towards Improving resistance to Sclerotinia sclerotiorum. Plant Protect Sci 51:6–12

    Article  Google Scholar 

  • Sweetingham MW, Cruickshank RH, Wong DH (1986) Pectic zymograms and taxonomy and pathogenicity of the Ceratobasidiaceae. Trans Brit Mycol Soc 86:305–311

    Article  CAS  Google Scholar 

  • Taylor RJ, Secor GA (1988) An improved diffusion assay for quantifying the polygalacturonase content of Erwinia culture filtrates. Phytopathology 78:1101–1103

    Article  CAS  Google Scholar 

  • Xian H, Li D, Li J, Zhang L (2012) Cloning and functional analysis of a novel chitinase gene Trchi1 from Trichothecium roseum. Biotechnol Lett 34:1921–1928

    Article  PubMed  Google Scholar 

  • Zeilinger S, Galhaup C, Payer K, Woo SL, Mach RL, Fekete C, Lorito M, Kubicek CP (1999) Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianumwith its host. Fungal Genet Biol 26:131–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge National Institute of Genetic Engineering and Biotechnology (Project No. 407-M) for providing financial for this work.

Supporting Information

Supplementary Table 1—The sequence of primers used in PCR and Southern blot analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Motallebi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziaei, M., Motallebi, M., Zamani, M.R. et al. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum . Biotechnol Lett 38, 1021–1032 (2016). https://doi.org/10.1007/s10529-016-2058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2058-7

Keywords

Navigation