Skip to main content

Advertisement

Log in

Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Most plants encode a limited set of polygalacturonase inhibitor (PGIP) genes that may be involved in aspects of plant development, but more importantly in the inactivation of polygalacturonases (PG) secreted by pathogens. Previously, we characterized two Brassica napus PGIP genes, BnPgip1 and BnPgip2, which were differentially expressed in response to pathogen infection and wounding. Here we report that the B. napus genome encodes a set of at least 16 PGIP genes that are similar to BnPgip1 or BnPgip2. This is the largest Pgip gene family reported to date. Comparison of the BnPGIPs revealed several sites within the xxLxLxx region of leucine rich repeats that form β-sheets along the interacting face of the PGIP that are hypervariable and represent good candidates for generating PGIP diversity. Characterization of the regulatory regions and RT-PCR studies with gene-specific primers revealed that individual genes were differentially responsive to pathogen infection, mechanical wounding and signaling molecules. Many of the BnPgip genes responded to infection by the necrotic pathogen, Sclerotinia sclerotiorum; however, these genes were also induced either by jasmonic acid, wounding and salicylic acid or some combination thereof. The large number of PGIPs and the differential manner in which they are regulated likely ensures that B. napus can respond to attack from a broad spectrum of pathogens and pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artifical chromosome

cDNA:

Complementary deoxyribonucleic acid

DNA:

Deoxyribonucleic acid

DEPC:

Diethylpyrocarbonate

GUS:

β-Glucuronidase

JA:

Jasmonic acid

MS:

Minimal salts

NTP:

Nucleoside triphosphate

PCR:

Polymerase chain reaction

PDA:

Potato dextrose agar

PG:

Polygalacturonase

PGIP:

Polygalacturonase inhibitor protein

RT-PCR:

Reverse transcription polymerase chain reaction

SA:

Salicylic acid

SDS:

Sodium dodecyl sulphate

SSC:

Sodium chloride–sodium citrate

References

  • Aguero CB, Uratsu SL, Greve C, Powell A, Labavitch JM, Meredith CP, Dandejar AM (2005) Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitus vinifera L. expressing the pear PGIP gene. Mol Plant Pathol 6:43–51

    Article  CAS  Google Scholar 

  • Bishop JG (2005) Directed mutagenesis confirms the functional importance of positively selected sites in polygalacturonase inhibitor protein. Mol Biol Evol 22:1531–1534

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Coutu C, Brandle J, Brown D, Brown K, Miki B, Simmonds J, Hegedus DD (2007) pORE: a modular binary vector series suited for both monocot and dicot plant transformation. Transgenic Res 16:771–781

    Article  PubMed  CAS  Google Scholar 

  • Darvill A, Bergmann C, Cervone F, De Lorenzo G, Ham KS, Spiro MD, York WS, Albersheim P (1994) Oligosaccharins involved in plant growth and host–pathogen interactions. Biochem Soc Symp 60:89–94

    PubMed  CAS  Google Scholar 

  • D’Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O’Sullivan D, De Lorenzo G (2004) Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol 135:2424–2435

    Article  PubMed  CAS  Google Scholar 

  • D’Ovidio R, Roberti S, Di Giovanni M, Capodicasa C, Melaragni M, Sella L, Tosi P, Favaron F (2006) The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta 224:633–645

    Article  PubMed  CAS  Google Scholar 

  • De Lorenzo G, Cervone F (1997) Polygalacturonase-inhibiting proteins (PGIP): their role in specificity and defense against pathogenic fungi. In: Stacey G, Keen NT (eds) Plant–microbe interactions, vol 3. Chapman & Hall, New York, pp 76–93

  • De Lorenzo G, Cervone F, Bellicampi D, Caprari C, Clark AJ, Desiderio A, Devoto A, Forrest R, Leckie F, Nuss L, Salvi G (1994) Polygalacturonase, PGIP and oligogalacturonides in cell–cell communication. Biochem Soc Trans 22:396–399

    Google Scholar 

  • De Lorenzo G, D’Ovidio R, Cervone F (2001) The role of polygalacturonase-inhibiting proteins (PGIP) in defense against pathogenic fungi. Annu Rev Phytopathol 39:313–335

    Article  PubMed  Google Scholar 

  • Di Matteo A, Federici L, Mattei B, Salvi G, Johnson KA, Savino C, De Lorenzo G, Tsernoglou D, Cervone F (2003) The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proc Natl Acad Sci USA 100:10124–10128

    Article  PubMed  CAS  Google Scholar 

  • Di Matteo A, Bonivento D, Tsernoglou D, Federici L, Cervone F (2006) Polygalacturonase-inhibiting protein (PGIP) in plant defence: a structural view. Phytochemistry 67:528–533

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signalling. Curr Opin Plant Biol 10:366–371

    Article  PubMed  CAS  Google Scholar 

  • Federici L, Caprari C, Mattei B, Savino C, Di Matteo A, De Lorenzo G, Cervone F, Tsernoglou D (2001) Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc Natl Acad Sci USA 98:13425–13430

    Article  PubMed  CAS  Google Scholar 

  • Federici L, Di Matteo A, Fernandez-Recio J, Tsernoglou D, Cervone F (2006) Polygalacturonase inhibiting proteins: players in plant innate immunity. Trends Plant Sci 11:65–70

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Vairo D, Ausubel FM, Cervone F, De Lorenzo G (2003) Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated co-ordinately by different signal transduction pathways in response to fungal infection. Plant Cell 15:93–106

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Galletti R, Vairo D, Cervone F, De Lorenzo G (2006) Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Mol Plant Microbe Interact 19:931–936

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Maceira FI, Di Pietro A, Huertas-Gonzalez MD, Ruiz-Roldan MC, Roncero MIG (2001) Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl Environ Microbiol 67:2191–2196

    Article  PubMed  CAS  Google Scholar 

  • Gomathi V, Gnanamanickam SS (2004) Polygalacturonase-inhibiting proteins in plant defence. Curr Sci 87:1211–1217

    CAS  Google Scholar 

  • Gotesson A, Marshall JS, Jones DA, Hardham AR (2002) Characterization and evolutionary analysis of a large polygalacturonase gene family in the oomycete plant pathogen Phytophthora cinnamomi. Mol Plant Microbe Interact 15:907–921

    Article  PubMed  CAS  Google Scholar 

  • James JT, Dubery IA (2001) Inhibition of polygalacturonase from Verticillium dahliae by a polygalacturonase inhibiting protein from cotton. Phytochemistry 57:149–156

    Article  PubMed  CAS  Google Scholar 

  • Jang S, Lee B, Kim C, Kim SJ, Yim J, Han JJ, Lee S, Kim SR, An G (2003) The OsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice. Plant Mol Biol 53:357–569

    Article  PubMed  CAS  Google Scholar 

  • Janni M, Di Giovanni M, Roberti S, Capodicasa C, D’Ovidio R (2006) Characterization of expressed Pgip genes in rice and wheat reveals similar extent of sequence variation to dicto PGIPs and identifies an active PGIP lacking an entire LRR repeat. Theor Appl Genet 113:1233–1245

    Article  PubMed  CAS  Google Scholar 

  • Joubert DA, Slaughter AR, Kemp G, Becker J, Krooshof GH, Bergmann C, Benen J, Pretorius IS, Vivier MA (2006) The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. Transgenic Res 15:687–702

    Article  PubMed  CAS  Google Scholar 

  • Juge N (2006) Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci 11:359–367

    Article  PubMed  CAS  Google Scholar 

  • Kars I, Krooshof G, Wagemakers L, Joosten R, Benen J, van Kan JA (2005) Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J 43:213–225

    Article  PubMed  CAS  Google Scholar 

  • Kemp G, Stanton L, Bergmann CW, Clay RP, Albersheim P, Darvill A (2004) Polygalacturonase-inhibiting proteins can function as activators of polygalacturonases. Mol Plant Microbe Interact 17:888–894

    Article  PubMed  CAS  Google Scholar 

  • Leckie F, Mattei B, Capodicasa C, Hemmings A, Nuss L, Aracri B, De Lorenzo G, Cervone F (1999) The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed beta-strand/beta-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO J 18:2352–2363

    Article  PubMed  CAS  Google Scholar 

  • Li R, Rimmer SR, Yu M, Sharpe AG, Séguin-Swartz G, Lydiate D, Hegedus DD (2003) Two polygalacturonase inhibitory protein genes are differentially expressed in response to biotic and abiotic stresses in Brassica napus. Planta 217:299–308

    PubMed  CAS  Google Scholar 

  • Li R, Rimmer R, Buchwaldt L, Sharpe AG, Séguin-Swartz G, Hegedus DD (2004) Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genet Biol 41:754–765

    Article  PubMed  CAS  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  PubMed  CAS  Google Scholar 

  • Powell AL, van Kan J, ten Have A, Visser J, Greve LC, Bennett AB, Labavitch JM (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microbe Interact 13:942–950

    Article  PubMed  CAS  Google Scholar 

  • Prade RA, Zhan D, Ayoubi P, Mort A (1999) Pectins, pectinases and plant-microbe interactions. Biotechnol Genet Eng Rev 16:361–390

    PubMed  CAS  Google Scholar 

  • Sella L, Castiglioni C, Roberti S, D’Ovidio R, Favaron F (2004) An endo-polygalacturonase (PG) of Fusarium moniliforme escaping inhibition by plant polygalacturonase-inhibiting proteins (PGIPs) provides new insights into the PG–PGIP interaction. FEMS Microbiol Lett 240:117–124

    Article  PubMed  CAS  Google Scholar 

  • Sicilia F, Fernandez-Recio J, Caprari C, De Lorenzo G, Tsernoglou D, Cervone F, Federici L (2005) The polygalacturonase-inhibiting protein PGIP2 of Phaseolus vulgaris has evolved a mixed mode of inhibition of endopolygalacturonase PG1 of Botrytis cinerea. Plant Physiol 139:1380–1388

    Article  PubMed  CAS  Google Scholar 

  • Shieh MT, Brown RL, Whitehead MP, Cary JW, Cotty PJ, Cleveland TE, Dean RA (1997) Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol 63:3548–3552

    PubMed  CAS  Google Scholar 

  • Spadoni S, Zabotina O, Di Matteo A, Mikkelsen JD, Cervone F, De Lorenzo G, Mattei B, Bellincampi D (2006) Polygalacturonase-inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine. Plant Physiol 141:557–564

    Article  PubMed  CAS  Google Scholar 

  • Stotz HU, Bishop JG, Bergmann CW, Koch M, Albersheim P, Darvill AG, Labavitch JM (2000) Identification of target amino acids that affect interactions of fungal polygalacturonases and their plant inhibitors. Physiol Mol Plant Pathol 56:117–130

    Article  CAS  Google Scholar 

  • Tamura M, Gao M, Tao R, Labavitch JM, Dandekar AM (2004) Transformation of persimmon with a pear fruit polygalacturonase inhibiting protein (PGIP) gene. Sci Hortic 103:19–30

    Article  CAS  Google Scholar 

  • ten Have A, Mulder W, Visser J, van Kan JA (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant Microbe Interact 11:1009–1016

    Article  PubMed  CAS  Google Scholar 

  • ten Have A, Breuil WO, Wubben JP, Visser J, van Kan JA (2001) Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet Biol 33:97–105

    Article  PubMed  CAS  Google Scholar 

  • Wagner F, Kusserow H, Schafer W (2000) Cloning and targeted disruption of two polygalacturonase genes in Penicillium olsonii. FEMS Microbiol Lett 186:293–299

    Article  PubMed  CAS  Google Scholar 

  • Zuppini A, Navazio L, Sella L, Castiglioni C, Favaron F, Mariani P (2005) An endopolygalacturonase from Sclerotinia sclerotiorum induces calcium-mediated signalling and programmed cell death in soybean cells. Mol Plant Microbe Interact 18:849–855

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Saskatchewan Agriculture Development Fund, the Saskatchewan Canola Development Commission and the Agriculture and Agri-Food Canada Matching Investments Initiative for providing funding to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwayne D. Hegedus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegedus, D.D., Li, R., Buchwaldt, L. et al. Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment. Planta 228, 241–253 (2008). https://doi.org/10.1007/s00425-008-0733-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0733-1

Keywords

Navigation