Skip to main content
Log in

Transgenic expression of plant chitinases to enhance disease resistance

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Crop plants have evolved an array of mechanisms to counter biotic and abiotic stresses. Many pathogenesis-related proteins are expressed by plants during the attack of pathogens. Advances in recombinant DNA technology and understanding of plant–microbe interactions at the molecular level have paved the way for isolation and characterization of genes encoding such proteins, including chitinases. Chitinases are included in families 18 and 19 of glycosyl hydrolases (according to www.cazy.org) and they are further categorized into seven major classes based on their aminoacid sequence homology, three-dimensional structures, and hydrolytic mechanisms of catalytic reactions. Although chitin is not a component of plant cell walls, plant chitinases are involved in development and non-specific stress responses. Also, chitinase genes sourced from plants have been successfully over-expressed in crop plants to combat fungal pathogens. Crops such as tomato, potato, maize, groundnut, mustard, finger millet, cotton, lychee, banana, grape, wheat and rice have been successfully engineered for fungal resistance either with chitinase alone or in combination with other PR proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd El-Rahman SS, Mazen MM, Mohamed HI, Mahmoud NM (2012) Induction of defence related enzymes and phenolic compounds in lupin (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. Eur J Plant Pathol 134:105–116

    Article  CAS  Google Scholar 

  • Acharya K, Chakraborty N, Dutta AK, Sarkar S, Acharya R (2011) Signaling role of nitric oxide in the induction of plant defense by exogenous application of abiotic inducers. Arch Phytopath Plant Protect 44:1501–1511

    Article  CAS  Google Scholar 

  • Ahmed NU, Park JI, Seo MS, Kumar TS, Lee IH, Park BS, Nou IS (2012) Identification and expression analysis of chitinase genes related to biotic stress resistance in Brassica. Mol Biol Rep 39:3649–3657

    Article  PubMed  CAS  Google Scholar 

  • Araki T, Torikata T (1995) Structural classification of plant chitinases: two subclasses in class I and class II chitinases. Biosci Biotechnol Biochem 59:336–338

    Article  PubMed  CAS  Google Scholar 

  • Arlorio M, Ludwig A, Boller T, Bonafonte P (1992) Inhibition of fungal growth by plant chitinases and β-1,3-glucanases: a morphological study. Protoplasma 17:34–43

    Article  Google Scholar 

  • Bariya HS, Thakkar VR, Thakkar AN, Subramanian RB (2011) Induction of systemic resistance in different varieties of Solanum tuberosum by pure and crude elicitor treatment. Indian J Exp Biol 49:151–162

    PubMed  CAS  Google Scholar 

  • Bezirganoglu I, Hwang SY, Fang TJ, Shaw JF (2013) Transgenic lines of melon (Cucumis melo L. var. makuwa cv. ‘Silver Light’) expressing antifungal protein and chitinase genes exhibit enhanced resistance to fungal pathogens. Plant Cell Tiss Organ Cult 12:227–237

    Article  Google Scholar 

  • Boava LP, Laia ML, Jacob TR, Dabbas KM, Goncalves JF, Ferro JA, Ferro MI, Furtado EL (2010) Selection of endogenous genes for gene expression studies in Eucalyptus under biotic (Puccinia psidii) and abiotic (acibenzolar-S-methyl) stresses using RT-qPCR. BMC Res Notes 3:43. doi:10.1186/1756-0500-3-43

    Article  PubMed  Google Scholar 

  • Chen SC, Liu AR, Wang FH, Ahammed GJ (2009) Combined overexpression of chitinase and defensin genes in transgenic tomato enhances resistance to Botrytis cinerea. Afr J Biotechnol 8:5182–5188

    CAS  Google Scholar 

  • Chhikara S, Chaudhury D, Dhankher OP, Jaiwal PK (2012) Combined expression of a barley class II chitinase and type I ribosome inactivating protein in transgenic Brassica juncea provides protection against Alternaria brassicae. Plant Cell Tiss Organ Cult 108:83–89

    Article  CAS  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelesen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  PubMed  CAS  Google Scholar 

  • Das DK, Rahman A (2012) Expression of a rice chitinase gene enhances antifungal response in transgenic litchi (cv. Bedana). Plant Cell Tiss Organ Cult 109:315–325

    Article  CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Gianinazzi S, Martin C, Vallee JC (1970) Hypersensibilité aux virus, température et protéins soluble chez le Nicotiana Xanthi nc. Appararition de nouvelles macromolécules lors de la répression de la synthése virale. CR Acad Sci D 270:2383–2386

    CAS  Google Scholar 

  • Girhepuje PV, Shinde GB (2011) Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. lycopersici. Plant Cell Tiss Org Cult 105:243–251

    Article  CAS  Google Scholar 

  • Grover A (2012) Plant Chitinases: genetic diversity and physiological roles. Crit Rev Plant Sci 31:57–63

    Article  CAS  Google Scholar 

  • Guevara-Morato MA, de Lacoba MG, García-Luque I, Serra MT (2010) Characterization of a pathogenesis-related protein 4 (PR-4) induced in Capsicum chinense L3 plants with dual RNase and DNase activities. J Exp Bot 61:3259–3271

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Ravi I, Sharma V (2012) Induction of β-1,3-glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaria brassicicola. J Plant Interact 1–7

  • Hart PJ, Pfluger HD, Monzingo AF, Hollis T, Robertus JD (1995) The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8 Å resolution. J Mol Biol 248:402–413

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. J Biochem 293:781–788

    CAS  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Wang J, Du Z, Zhang C, Li L, Xu Z (2013) Enhanced resistance to stripe rust disease in transgenic wheat expressing the rice chitinase gene RC24. Transgen Res. doi:10.1007/s11248-013-9704-9

    Google Scholar 

  • Ignacimuthu S, Ceasar SA (2012) Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci 37:135–147

    Article  PubMed  CAS  Google Scholar 

  • Iqbal MM, Nazir F, Ali S, Asif MA, Zafar Y, Iqbal J, Ali GM (2012) Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Mol Biotechnol 50:129–136

    Article  PubMed  CAS  Google Scholar 

  • Ishisaki K, Honda Y, Taniguchi H, Hatano N, Hamada T (2012) Heterogonous expression and characterization of a plant class IV chitinase from the pitcher of the carnivorous plant Nepenthes alata. Glycobiology 22:345–351

    Article  PubMed  CAS  Google Scholar 

  • Jayalakshmi SK, Raju S, Usharani S, Kurucheve V, Benagi V, Sreeramulu K (2011) Differential expression of defense related enzymes and protease inhibitors in two different genotypes of chickpea by Trichoderma harzianum L1. Aust J Crop Sci 5:885–894

    CAS  Google Scholar 

  • Jayaraj J, Punja ZK (2007) Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep 26:1539–1546

    Article  PubMed  CAS  Google Scholar 

  • Kasprzewska A (2003) Plant chitinases-regulation and function. Cell Mol Biol Lett 8:809–824

    PubMed  CAS  Google Scholar 

  • Khaliluev MR, Mamonov AG, Smirnov AN, Kharchenko PN, Dolgov SV (2011) Expression of genes encoding chitin-binding proteins (PR-4) and hevein-like antimicrobial peptides in transgenic tomato plants enhanced resistance to Phytophthora infestance. Russ Agric Sci 37:297–302

    Article  Google Scholar 

  • Kirubakaran IS, Sakthivel N (2007) Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli. Prot Expr Purif 52:159–166

    Article  CAS  Google Scholar 

  • Koche D, Choudhary A (2012) Induction of hydrolases and phenylalanine ammonia-lyase by pathogen derived elicitors in mungbean (Vigna radiata L.). Elect J Biol 8:11–14

    Google Scholar 

  • Kovacs G, Sagi L, Jacon G, Arinaitwe G, Busogoro JP, Thiry E, Strosse H, Swennen R, Remy S (2013) Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgen Res 22:117–130

    Article  CAS  Google Scholar 

  • Li X, Xia B, Jiang Y, Wu Q, Wang C, He L, Wang R (2010a) A new pathogenesis-related protein, LrPR4, from Lycoris radiata, and its antifungal activity against Magnaporthe grisea. Mol Biol Rep 37:995–1001

    Article  PubMed  CAS  Google Scholar 

  • Li DM, Staehelin C, Wang WT, Peng SL (2010b) Molecular cloning and characterization of a chitinase-homologous gene from Mikania micrantha infected by Cuscuta campestris. Plant Mol Biol Rep 28:90–101

    Article  CAS  Google Scholar 

  • Liu ZH, Yang CP, Qi XT, Xiu LL, Wang YC (2010) Cloning, heterologous expression, and functional characterization of a chitinase gene, Lbchi32, from Limonium bicolor. Biochem Genet 48:669–679

    Article  PubMed  CAS  Google Scholar 

  • Liu ZW, Li HP, Cheng W, Yang P, Zhang JB, Gong AD, Feng YN, Fernando WGD, Liao YC (2012) Enhanced overall resistance to Fusarium seedling blight and Fusarium head blight in transgenic wheat by co-expression of anti-fungal peptides. Eur J Plant Pathol 134:721–732

    Article  CAS  Google Scholar 

  • Lu HC, Lin JH, Chua AC, Chung TY, Tsai IC, Tzen JT, Chou WM (2012) Cloning and expression of pathogenesis-related protein 4 from jelly fig (Ficus awkeotsang Makino) achenes associated with ribonuclease, chitinase and anti-fungal activities. Plant Physiol Biochem 56:1–13

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Liu J, Lee RD, Scully BT, Guo B (2010) Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray. J Integr Plant Biol 52:1059–1074

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Zeng K, Ming J (2012) Control of blue and green mold decay of citrus fruit by Pichia membranefaciens and induction of defense responses. Sci Hortic 135:120–127

    Article  CAS  Google Scholar 

  • Mauch F, Staehelin SA (1989) Functional implications of the subcellular localization of ethylene-induced chitinase and β-1,3-glucanase in bean leaves. Plant Cell 1:447–457

    PubMed  CAS  Google Scholar 

  • Meszaros P, Rybansky L, Hauptvogel P, Kuna R, Libantova J, Moravcikova J, Pirselova B, Tirpakova A, Matusikova I (2012) Cultivar-specific kinetics of chitinase induction in soybean roots during exposure to arsenic. Mol Biol Rep 40:2127–2138

    Article  PubMed  Google Scholar 

  • Neuhaus JM (1999) Plant chitinases (PR-3, PR-4, PR-8, PR-11). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plant. CRC Press, Florida, pp 77–105

    Google Scholar 

  • Nookaraju A, Agrawal DC (2012) Enhanced tolerance of transgenic grapevines expressing chitinase and β-1, 3-glucanase genes to downy mildew. Plant Cell Tiss Org Cult 111:15–28

    Article  CAS  Google Scholar 

  • Ohnuma T, Numata T, Osawa T, Mizuhara M, Lampela O, Juffer AH, Fukamizo T (2011a) A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Planta 2341:123–137

    Article  Google Scholar 

  • Ohnuma T, Numata T, Osawa T, Mizuhara M, Varum KM, Fukamizo T (2011b) Crystal structure and mode of action of a class V chitinase from Nicotiana tabaccum. Plant Mol Biol 75:291–304

    Article  PubMed  CAS  Google Scholar 

  • Ohnuma T, Taira T, Fukamizo T (2012) Antifungal activity of recombinant class V chitinases from Nicotiana tabacum and Arabidopsis thaliana. J Appl Glycosci 59:47–50

    Article  CAS  Google Scholar 

  • Onaga S, Chinen K, Ito S, Taira T (2011) Highly thermostable chitinase from pineapple: cloning, expression, and enzymatic properties. Proc Biochem 46:695–700

    Article  CAS  Google Scholar 

  • Orłowska E, Fiil A, Kirk HG, Llorente B, Cvitanich C (2012) Differential gene induction in resistant and susceptible potato cultivars at early stages of infection by Phytophthora infestans. Plant Cell Rep 31:187–203

    Article  PubMed  Google Scholar 

  • Pak JH, Chung ES, Shin SH, Jeon EH, Kim MJ, Lee HY, Jeung JU, Hyung NI, Lee JH, Chung YS (2009) Enhanced fungal resistance in Arabidopsis expressing wild rice PR-3 (OgChitIVa) encoding chitinase class IV. Plant Biotechnol Rep 3:147–155

    Article  Google Scholar 

  • Pan XQ, Fu DQ, Zhu BZ, Lu CW, Luo YB (2013) Overexpression of the ethylene response factor SlERF1 gene enhances resistance of tomato fruit to Rhizopus nigricans. Postharv Biol Technol 75:28–36

    Article  CAS  Google Scholar 

  • Patel SJ, Subramanian R, Jha YS (2011) Biochemical and molecular studies of early blight disease in tomato. Phytoparasitica 39:269–283

    Article  CAS  Google Scholar 

  • Perrakis A, Tews I, Dauter Z, Oppenheim AB, Chet I, Wilson KS, Vorgias CE (1994) Crystal structure of a bacterial chitinase at 2.3 Å resolution. Structure 2:1169–1180

    Article  PubMed  CAS  Google Scholar 

  • Prasad K, Bhatnagar-Mathur P, Waliyar F, Sharma KK (2012) Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. J Plant Biochem Biotechnol. doi:10.1007/s13562-012-0155-9

    Google Scholar 

  • Pulla RK, Lee OR, In JG, Parvin S, Kim YJ, Shim JS, Sun H, Kim YJ, Senthil K, Yang DC (2011) Identification and characterization of class I chitinase in Panax ginseng C. A. Meyer. Mol Biol Rep 38:95–102

    Article  CAS  Google Scholar 

  • Rahnamaeian M, Vilcinskas A (2012) Defense gene expression is potentiated in transgenic barley expressing antifungal peptide metchnikowin throughout powdery mildew challenge. J Plant Res 125:115–124

    Article  PubMed  CAS  Google Scholar 

  • Rottloff S, Stieber R, Maischak H, Turini FG, Heubl G, Mithofer A (2011) Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes. J Exp Bot 62:4639–4647

    Article  PubMed  CAS  Google Scholar 

  • Roy SC, Chakraborty BN (2012) Analysis of chitinase gene specific transcript accumulation in tea [Camellia sinensis (L.) O. Kuntze] during induced systemic resistance by methyl jasmonate. Indian J Biotechnol 11:142–147

    CAS  Google Scholar 

  • Rushanaedy I, Jones T, Dudley N, Liao RJF, Agbayani R, Borthakur D (2012) Chitinase is a potential molecular biomarker for detecting resistance to Fusarium oxysporum in Acacia koa. Trop Plant Biol 5:244–252

    Article  CAS  Google Scholar 

  • Selim S, Negrel J. Wendehenne D, Ochatt S, Gianinazzi S, van Tuinen D (2010)Stimulation of defense reactions in Medicago truncatula by antagonistic lipopeptides from Paenibacillus sp. Strain B2. Appl Environ Microbiol 76:7420-7428

    Google Scholar 

  • Senthilraja G, Anand T, Kennedy JS, Raguchander T, Samiyappan R (2013) Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiol Mol Plant Pathol. doi:10.1016/j.pmpp.2012.12.002

    Google Scholar 

  • Shah JM, Singh R, Veluthambi K (2013) Transgenic rice lines constitutively co-expressing tlp-D34 and chi11 display enhancement of sheath blight resistance. Biol Plantarum. doi:10.1007/s10535-012-0291-z

    Google Scholar 

  • Shanmugam V, Gupta S, Dohroo NP (2013) Selection of a compatible biocontrol strain mixture based on co-cultivation to control rhizome rot of ginger. Crop Prot 43:119–127

    Article  Google Scholar 

  • Shen Z, Jacobs-Lorena M (1997) Characterization of a novel gut-specific chitinase gene from the human malaria vector Anopheles gambiae. J Biol Chem 272:28895–28900

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Isaac Kirubakaran S, Sakthivel N (2007) Heterologous expression of new antifungal chitinase from wheat. Prot Express Purif 56:100–109

    Article  CAS  Google Scholar 

  • Sridevi G, Parameswari C, Sabapathi N, Raghupathy V, Veluthambi K (2008) Combined expression of chitinase and β-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci 175:283–290

    Article  CAS  Google Scholar 

  • Sun F, Zhang P, Guo M, Yu W, Chen K (2013) Burdock fructooligosaccharide induces fungal resistance in postharvest Kyoho grapes by activating the salicylic acid-dependent pathway and inhibiting browning. Food Chem 138:539–546

    Article  PubMed  CAS  Google Scholar 

  • Taira T, Mahoe Y, Kawamoto N, Onaga S, Iwasaki H, Ohnuma T, Fukamizo T (2011) Cloning and characterization of a small family 19 chitinase from moss (Bryum coronatum). Glycobiology 2:644–654

    Article  Google Scholar 

  • Tang W, Zhu S, Li L, Liu D, Irving DE (2010) Differential expressions of PR1 and benzothiadizole and methyl jasmonate during ripening, and in response to ethephon, benzothiadizole and methyl jasmonate. Postharv Biol Technol 57:86–91

    Article  CAS  Google Scholar 

  • Tapia G, Morales-Quintana L, Inostroza L, Acuna H (2011) Molecular characterisation of Ltchi7, a gene encoding a Class III endochitinase induced by drought stress in Lotus spp. Plant Biol 13:69–77

    Article  PubMed  CAS  Google Scholar 

  • Thakker JN, Patel S, Dhandhukia PC (2013) Induction of defense-related enzymes in banana plants: effect of live and dead pathogenic strain of Fusarium oxysporum f. sp. cubense. ISRN Biotechnol. doi:10.5402/2013/601303

    Google Scholar 

  • Tohidfar M, Mohammadi M, Ghareyazie B (2005) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tiss Org Cult 83:83–96

    Article  CAS  Google Scholar 

  • Tohidfar M, Hossaini R, Bashir NS, Meisam T (2012) Enhanced resistance to Verticillium dahliae in transgenic cotton expressing an endochitinase gene from Phaseolus vulgaris. Czech J Genet Plant Breed 48:33–41

    Google Scholar 

  • Torres J, Calderon H, Rodriguez-Arango E, Morales JG, Arango R (2012) Differential induction of pathogenesis-related proteins in banana in response to Mycosphaerella fijiensis infection. Eur J Plant Pathol 133:887–898

    Article  CAS  Google Scholar 

  • Van Loon LC, Van Kammen A (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”. II. Changes in leaf protein constitution after infection with tobacco mosaic virus. Virology 40:199–211

    Article  Google Scholar 

  • Veluthakkal R, Dasgupta MG (2012) Isolation and characterization of pathogen defence-related class I chitinase from the actinorhizal tree Casuarina equisetifolia. For Path 42:467–480

    Article  Google Scholar 

  • Wally O, Jayaraj J, Punja Z (2009) Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, β-1,3-glucanase and peroxidise. Eur J Plant Pathol 123:331–342

    Article  CAS  Google Scholar 

  • Wang J, Bi Y, Zhang Z, Zhang H, Ge Y (2011) Reduction of latent infection and enhancement of disease resistance in muskmelon by preharvest application of harpin. J Agric Food Chem 59:12527–12533

    Article  PubMed  CAS  Google Scholar 

  • Xayphakatsa K, Tsukiyama T, Inouye K, Okumoto Y, Nakazaki T, Tanisaka T (2008) Gene cloning, expression, purification and characterization of rice (Oryza sativa L.) class II chitinase CHT11. Enzyme Microb Technol 43:19–24

    Article  CAS  Google Scholar 

  • Yaqoob N, Yakovlev IA, Krokene P, Kvaalen H, Solheim H, Fossdal CG (2012) Defence-related gene expression in bark and sapwood of Norway spruce in response to Heterobasidion parviporum and methyl jasmonate. Physiol Mol Plant Pathol 77:10–16

    Article  CAS  Google Scholar 

  • Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL (2013) Sequence analysis and gene expression of putative oil palm chitinase and chitinase-like proteins in response to colonization of Ganoderma boninense and Trichoderma harzianum. Mol Biol Rep 40:147–158

    Article  PubMed  CAS  Google Scholar 

  • Zambounis AG, Kalamaki MS, Tani EE, Paplomatas EJ, Tsaftaris AS (2012) Expression analysis of defense-related genes in cotton (Gossypium hirsutum) after Fusarium oxysporum f. sp. vasinfectum infection and following chemical elicitation using a salicylic acid analog and methyl jasmonate. Plant Mol Biol Rep 30:225–234

    Article  CAS  Google Scholar 

  • Zhang J, Du X, Wang Q, Chen X, Lv D, Xu K, Qu S, Zhang Z (2010) Expression of pathogenesis related genes in response to salicylic acid, methyl jasmonate and 1-aminocyclopropane-1-carboxylic acid in Malus hupehensis (Pamp.) Rehd. BMC Res notes 3:208

    Article  PubMed  Google Scholar 

  • Zhu Y, Zhao F, Zhao D (2011) Regeneration and transformation of a maize elite inbred line via immature embryo culture and enhanced tolerance to a fungal pathogen Exserohilum turcicum with a balsam pear class I chitinase gene. Afr J Agric Res 6:1923–1930

    Google Scholar 

  • Zur I, Gołebiowska G, Dubas E, Golemiec E, Matusikova I, Libantova J, Moravcikova J (2013) β-1,3-glucanase and chitinase activities in winter triticales during cold hardening and subsequent infection by Microdochium nivale. Biologia 68:241–248

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natarajan Sakthivel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cletus, J., Balasubramanian, V., Vashisht, D. et al. Transgenic expression of plant chitinases to enhance disease resistance. Biotechnol Lett 35, 1719–1732 (2013). https://doi.org/10.1007/s10529-013-1269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1269-4

Keywords

Navigation