Skip to main content
Log in

Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Interest in developing a sustainable technology for fuels and chemicals has unleashed tremendous creativity in metabolic engineering for strain development over the last few years. This is driven by the exceptionally recalcitrant substrate, lignocellulose, and the necessity to keep the costs down for commodity products. Traditional methods of gene expression and evolutionary engineering are more effectively used with the help of synthetic biology and -omics techniques. Compared to the last biomass research peak during the 1980s oil crisis, a more diverse range of microorganisms are being engineered for a greater variety of products, reflecting the broad applicability and effectiveness of today’s gene technology. We review here several prominent and successful metabolic engineering strategies with emphasis on the following four areas: xylose catabolism, inhibitor tolerance, synthetic microbial consortium, and cellulosic oligomer assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal M, Mao Z, Chen R (2011) Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Biotechnol Bioeng 108:777–805

    Article  CAS  PubMed  Google Scholar 

  • Almario MP, Reyes LH, Kao KC (2013) Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng 110:2616–2623

    Article  CAS  PubMed  Google Scholar 

  • Bae YH, Yang KH, Jin YS, Seo JH (2014) Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. J Biotechnol 169:34–41

    Article  CAS  PubMed  Google Scholar 

  • Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci USA 108:19949–19954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bootten TJ, Joblin KN, McArdle BH, Harris PJ (2011) Degradation of lignified secondary cell walls of lucerne (Medicago sativa L.) by rumen fungi growing in methanogenic co-culture. J Appl Microbiol 111:1086–1096

    Article  CAS  PubMed  Google Scholar 

  • Cheirsilp B, Suwannarat W, Niyomdecha R (2011) Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. Nat Biotechnol 28:362–368

    CAS  Google Scholar 

  • Chen R (2015) A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature. Bioengineered 6:69–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn KL, Rao CV (2015) Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis. Appl Microbiol Biotechnol 98:6897–6905

    Article  Google Scholar 

  • Frederix M, Hutter K, Leu J, Batth TS, Turner WJ, Ruegg TL, Blanch HW, Simmons BA, Keasling JD, Thelen MP, Dunlop MJ, Petzold CJ, Mukhopadhyay A (2014) Development of a native Escherichia coli induction system for ionic liquid tolerance. PLoS One 9:e101115

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaida SM, Al-Hinai MA, Indurthi DC, Nicolaou SA, Papoutsakis ET (2013) Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acid Res 41:8726–8737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330:84–86

    Article  CAS  PubMed  Google Scholar 

  • Geng H, Jiang R (2015) cAMP receptor protein (CRP)-mediated resistance/tolerance in bacteria: mechanism and utilization in biotechnology. Appl Microbiol Biotechnol 99:4533–4543

    Article  CAS  PubMed  Google Scholar 

  • Ha SJ, Wei Q, Kim SR, Galazka JM, Cate JH, Jin YS (2011) Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 77:5822–5825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha SJ, Kim SR, Kim H, Du J, Cate JH, Jin YS (2013) Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. Bioresour Technol 149:525–531

    Article  CAS  PubMed  Google Scholar 

  • Hanly TJ, Urello M, Henson MA (2012) Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures. Appl Microbiol Biotechnol 93:2529–2541

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Suo F, Wang C, Li X, Shen Y, Bao X (2014) Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae. BMC Biotechnol 14:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaczmaryk D, Anfelt J, Sarnegrim A, Hudson EP (2014) Overexpression of sigma factor SigB improves temperature and butanol tolerance of Synechocystis sp. PCC6803. J Biotechnol 182–183:54–60

    Article  Google Scholar 

  • Kang A, Chang MW (2012) Identification and reconstitution of genetic regulatory networks for improved microbial tolerance to isooctane. Mol BioSyst 8:1350–1358

    Article  CAS  PubMed  Google Scholar 

  • Kerner A, Park J, Williams A, Lin XN (2012) A programmable Escherichia coli consortium via tunable symbiosis. PLoS One 7:e34032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Lee WH, Galazka JM, Cate JH, Jin YS (2014) Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation. Appl Microbiol Biotechnol 98:1087–1094

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Jin YS, Choi IG, Park YC, Seo JH (2015) Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metab Eng 29:46–55

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa K, Debono AC, Sinskey AJ (2015) Lignocellulose-derived inhibitors improve lipid extraction from wet Rhodococcus opacus cells. Bioresour Technol 193:206–212

    Article  CAS  PubMed  Google Scholar 

  • Lane S, Zhang S, Wei N, Rao C, Jin YS (2015) Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica. Biotechnol Bioeng 112(5):1012–1022

    Article  CAS  PubMed  Google Scholar 

  • le Bui M, Lee JY, Geraldi A, Rahman Z, Lee JH, Kim SC (2015) Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions. J Biotechnol 204:33–44

    Article  CAS  Google Scholar 

  • Lee WH, Nan H, Kim HJ, Jin YS (2013) Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. J Biotechnol 167:316–322

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Jellison T, Alper HS (2014) Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 7:122

    PubMed  PubMed Central  Google Scholar 

  • Lennen RM, Pfleger BF (2013) Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One 8:e54031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Li K, Wang Y, Chen C, Xu Y, Zhang L, Han B, Gao C, Tao F, Ma C, Xu P (2015a) Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab Eng 28:19–27

    Article  CAS  PubMed  Google Scholar 

  • Li P, Sun H, Chen Z, Li Y, Zhu T (2015b) Construction of efficient xylose utilizing Pichia pastoris for industrial enzyme production. Microb Cell Fact 14:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller EN, Turner PC, Jarboe LR, Ingram LO (2010) Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol-producing Escherichia coli LY180. Biotechnol Lett 32(5):661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci USA 110:14592–14597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais S, Shterzer N, Grinberg IR, Mathiesen G, Eijsink VG, Axelsson L, Lamed R, Bayer EA, Mizrahi I (2013) Establishment of a simple Lactobacillus plantarum cell consortium for cellulase-xylanase synergistic interactions. Appl Environ Microbiol 79:5242–5249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M, Jojima T, Yukawa H, Inui M (2015) Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl Environ Microbiol 81(7):2284–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira FB, Teixeira MC, Mira NP, Sa-Correia I, Domingues L (2014) Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates. J Ind Microbiol Biotechnol 41:1753–1756

    Article  CAS  PubMed  Google Scholar 

  • Radek AK, Krumbach J, Gatgens V, Wendisch F, Wiechert W, Bott M, Noack S, Marienhagen J (2014) Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of d-xylose containing substrates. J Biotechnol 192A:156–160

    Article  Google Scholar 

  • Rutter C, Chen R (2014) Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms. Biotechnol Lett 36:301–307

    Article  CAS  PubMed  Google Scholar 

  • Rutter C, Mao Z, Chen R (2013) Periplasmic expression of a Saccharophagus cellodextrinase enables E. coli to ferment cellodextrin. Appl Microbiol Biotechnol 97:8129–8138

    Article  CAS  PubMed  Google Scholar 

  • Salimi F, Mahadevan R (2013) Characterizing metabolic interactions in a Clostridial co-culture for consolidated bioprocessing. BMC Biotechnol 13:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekar R, Shin HD, Chen R (2012) Engineering Escherichia coli cells for cellobiose assimilation through a phosphorolytic mechanism. Appl Environ Microbiol 78:1611–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin HD, McClendon S, Vo T, Chen RR (2010) Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel. Appl Environ Microbiol 76:8150–8159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin HD, Yoon SH, Wu J, Rutter C, Kim SW, Chen RR (2012) High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts. Bioresour Technol 118:367–373

    Article  CAS  PubMed  Google Scholar 

  • Shin HD, Wu J, Chen R (2014) Comparative engineering of Escherichia coli for cellobiose utilization: hydrolysis versus phosphorolysis. Metab Eng 24:9–17

    Article  CAS  PubMed  Google Scholar 

  • Vargus-Tah A, Martinex LM, Hernandex-Chavex G, Rocha M, Martinex A, Bolivar F, Gosset G (2015) Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli. Micro Cell Fact 14:6

    Article  Google Scholar 

  • Villela L, de Araujo VP, Paredes R, Bon EP, Torres FA, Neves BC, Eleutherio EC (2015) Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express 5:16

    Article  Google Scholar 

  • Wang X, Yomano LP, Lee JY, York SW, Zhen H, Mullinnix MT, Shanmugam KT, Ingram LO (2013a) Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci USA 110:4021–4026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Li BZ, Ding MZ, Zhang WW, Yuan YJ (2013b) Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol. OMICS 17:150–159

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Bao X, Li Y, Jiao C, Hou J, Zhang Q, Zhang W, Liu W, Shen Y (2015) Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Metab Eng 30:79–88

    Article  PubMed  Google Scholar 

  • Wu Y, Yang Y, Ren C, Yang C, Yang S, Gu Y, Jiang W (2015) Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum. Metab Eng 28:169–179

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Pelletier DA, Lu TY, Brown SD (2010) The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol 10:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu L, Xu M, Tang IC, Yang ST (2015) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Biotechnol Bioeng 112:2134–2141

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Hu B (2012) A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol 114:529–535

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Li N, Wang N, Tang YJ, Chen T, Zhao X (2015) Inverse metabolic engineering of Bacillus subtilis for xylose utilization based on adaptive evolution and whole-genome sequencing. Appl Microbio Biotechnol 99:885–896

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Metabolic engineering and biomass-related research in Chen Lab at Georgia Institute of Technology is supported by NSF, USDA, Chevron Inc., C2Biofuel, and Georgia Research Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Dou, J. Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development. Biotechnol Lett 38, 213–221 (2016). https://doi.org/10.1007/s10529-015-1976-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1976-0

Keywords

Navigation