Skip to main content
Log in

Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Current researches into the production of biochemicals from lignocellulosic feedstocks are focused on the identification and engineering of individual microbes that utilize complex sugar mixtures. Microbial consortia represent an alternative approach that has the potential to better exploit individual species capabilities for substrate uptake and biochemical production. In this work, we construct and experimentally validate a dynamic flux balance model of a Saccharomyces cerevisiae and Escherichia coli co-culture designed for efficient aerobic consumption of glucose/xylose mixtures. Each microbe is a substrate specialist, with wild-type S. cerevisiae consuming only glucose and engineered E. coli strain ZSC113 consuming only xylose, to avoid diauxic growth commonly observed in individual microbes. Following experimental identification of a common pH and temperature for optimal co-culture batch growth, we demonstrate that pure culture models developed for optimal growth conditions can be adapted to the suboptimal, common growth condition by adjustment of the non-growth associated ATP maintenance of each microbe. By comparing pure culture model predictions to co-culture experimental data, the inhibitory effect of ethanol produced by S. cerevisiae on E. coli growth was found to be the only interaction necessary to include in the co-culture model to generate accurate batch profile predictions. Co-culture model utility was demonstrated by predicting initial cell concentrations that yield simultaneous glucose and xylose exhaustion for different sugar mixtures. Successful experimental validation of the model predictions demonstrated that steady-state metabolic reconstructions developed for individual microbes can be adapted to develop dynamic flux balance models of microbial consortia for the production of renewable chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott DA, Zelle RM, Pronk JT, Van Maris AJA (2009) Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res 9(8):1123–1136. doi:10.1111/j.1567-1364.2009.00537.x

    Article  CAS  Google Scholar 

  • Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Micro 7(10):715–723. doi:10.1038/nrmicro2186

    Article  CAS  Google Scholar 

  • Beck M, Johnson R, Baker C (1990) Ethanol production from glucose/xylose mixes by incorporating microbes in selected fermentation schemes. Appl Biochem Biotech 24–25(1):415–424. doi:10.1007/bf02920265

    Article  Google Scholar 

  • Blank LM, Sauer U (2004) TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 150(4):1085–1093. doi:10.1099/mic.0.26845-0

    Article  CAS  Google Scholar 

  • Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26(9):483–489. doi:10.1016/j.tibtech.2008.05.004

    Article  CAS  Google Scholar 

  • Curtis SJ, Epstein W (1975) Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J Bacteriol 122(3):1189–1199

    CAS  Google Scholar 

  • Davison BH, Stephanopoulos G (1986a) Coexistence of S. cerevisiae and E. coli in chemostat under substrate competition and product inhibition. Biotechnol Bioeng 28(11):1742–1752. doi:10.1002/bit.260281119

    Article  CAS  Google Scholar 

  • Davison BH, Stephanopoulos G (1986b) Effect of pH oscillations on a competing mixed culture. Biotechnol Bioeng 28(8):1127–1137. doi:10.1002/bit.260280802

    Article  CAS  Google Scholar 

  • De Bari I, Cuna D, Nanna F, Braccio G (2004) Ethanol production in immobilized-cell bioreactors from mixed sugar syrups and enzymatic hydrolysates of steam-exploded biomass. Appl Biochem Biotech 114(1):539–557. doi:10.1385/abab:114:1-3:539

    Article  Google Scholar 

  • Drake JF, Tsuchiya HM (1973) Differential counting in mixed cultures with coulter counters. Appl Environ Microbiol 26(1):9–13

    CAS  Google Scholar 

  • Duarte NC, Herrgård MJ, Palsson BØ (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14(7):1298–1309. doi:10.1101/gr.2250904

    Article  CAS  Google Scholar 

  • Echave P, Esparza-Cerón MA, Cabiscol E, Tamarit J, Ros J, Membrillo-Hernández J, Lin ECC (2002) DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli. P Natl Acad Sci USA 99(7):4626–4631. doi:10.1073/pnas.072504199

    Article  CAS  Google Scholar 

  • Eiteman M, Lee S, Altman E (2008) A co-fermentation strategy to consume sugar mixtures effectively. J Biol Eng 2(1):1–8. doi:10.1186/1754-1611-2-3

    Article  Google Scholar 

  • Eiteman MA, Lee SA, Altman R, Altman E (2009) A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Biotechnol Bioeng 102(3):822–827. doi:10.1002/bit.22103

    Article  CAS  Google Scholar 

  • Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Micro 7(2):129–143. doi:10.1038/nrmicro1949

    CAS  Google Scholar 

  • Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91(5):643–648. doi:10.1002/bit.20542

    Article  CAS  Google Scholar 

  • Govindaswamy S, Vane LM (2007) Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast. Bioresour Technol 98(3):677–685. doi:10.1016/j.biortech.2006.02.012

    Article  CAS  Google Scholar 

  • Guijarro JM, Lagunas R (1984) Saccharomyces cerevisiae does not accumulate ethanol against a concentration gradient. J Bacteriol 160(3):874–878

    CAS  Google Scholar 

  • Hanly TJ, Henson MA (2011) Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng 108(2):376–385. doi:10.1002/bit.22954

    Article  CAS  Google Scholar 

  • Hjersted JL, Henson MA (2006) Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models. Biotechnol Progr 22(5):1239–1248. doi:10.1021/bp060059v

    Article  CAS  Google Scholar 

  • Hjersted JL, Henson MA (2009) Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae. IET Syst Bio 3(3):167–179. doi:10.1049/iet-syb.2008.0103

    Article  CAS  Google Scholar 

  • Hjersted JL, Henson MA, Mahadevan R (2007) Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Biotechnol Bioeng 97(5):1190–1204. doi:10.1002/bit.21332

    Article  CAS  Google Scholar 

  • Klitgord N, Segrè D (2010) Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 6(11):e1001002. doi:10.1371/journal.pcbi.1001002

    Article  Google Scholar 

  • Laplace JM, Delgenes JP, Moletta R, Navarro JM (1993) Ethanol production from glucose and xylose by separated and co-culture processes using high cell density systems. Process Biochem 28(8):519–525. doi:10.1016/0032-9592(93)85013-6

    Article  CAS  Google Scholar 

  • Lawford H, Rousseau J (1994) Relative rates of sugar utilization by an ethanologenic recombinant Escherichia coli using mixtures of glucose, mannose, and xylose. Appl Biochem Biotech 45–46(1):367–381. doi:10.1007/bf02941812

    Article  Google Scholar 

  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotech 19(6):556–563. doi:10.1016/j.copbio.2008.10.014

    Article  CAS  Google Scholar 

  • Leschine S, Canale-Parola E (1984) Ethanol production from cellulose by a coculture of Zymomonas mobilis and a clostridium. Curr Microbiol 11(3):129–135. doi:10.1007/bf01567337

    Article  CAS  Google Scholar 

  • Mahadevan R, Edwards JS, Doyle Iii FJ (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340. doi:10.1016/S0006-3495(02)73903-9

    Article  CAS  Google Scholar 

  • Meadows AL, Karnik R, Lam H, Forestell S, Snedecor B (2010) Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation. Metab Eng 12(2):150–160. doi:10.1016/j.ymben.2009.07.006

    Article  CAS  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900

    CAS  Google Scholar 

  • Okuda N, Ninomiya K, Katakura Y, Shioya S (2008) Strategies for reducing supplemental medium cost in bioethanol production from waste house wood hydrolysate by ethanologenic Escherichia coli: inoculum size increase and coculture with Saccharomyces cerevisiae. J Biosci Bioeng 105(2):90–96. doi:10.1263/jbb.105.90

    Article  CAS  Google Scholar 

  • Price ND, Papin JA, Schilling CH, Palsson BO (2003) Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 21(4):162–169. doi:10.1016/S0167-7799(03)00030-1

    Article  CAS  Google Scholar 

  • Qian M, Tian S, Li X, Zhang J, Pan Y, Yang X (2006) Ethanol production from dilute-acid softwood hydrolysate by co-culture. Appl Biochem Biotech 134(3):273–283. doi:10.1385/ABAB:134:3:273

    Article  CAS  Google Scholar 

  • Reed J, Vo T, Schilling C, Palsson B (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54. doi:10.1186/gb-2003-4-9-r54

    Article  Google Scholar 

  • Rieger M, Kappeli O, Fiechter A (1983) The role of limited respiration in the incomplete oxidation of glucose by Saccharomyces cerevisiae. J Gen Microbiol 129(3):653–661. doi:10.1099/00221287-129-3-653

    CAS  Google Scholar 

  • Saerens S, Duong C, Nevoigt E (2010) Genetic improvement of brewer’s yeast: current state, perspectives and limits. Appl Microbiol Biot 86(5):1195–1212. doi:10.1007/s00253-010-2486-6

    Article  CAS  Google Scholar 

  • Salimi F, Zhuang K, Mahadevan R (2010) Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotech J 5(7):726–738. doi:10.1002/biot.201000159

    Article  CAS  Google Scholar 

  • Sedlak M, Edenberg HJ, Ho NWY (2003) DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast. Enz Microbiol Technol 33(1):19–28. doi:10.1016/S0141-0229(03)00067-X

    Article  CAS  Google Scholar 

  • Senger RS (2010) Biofuel production improvement with genome-scale models: the role of cell composition. Biotechnol J 5(7):671–685. doi:10.1002/biot.201000007

    Article  CAS  Google Scholar 

  • Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: part II. Development of specific proton flux states and numerically determined sub-systems. Biotechnol Bioeng 101(5):1053–1071. doi:10.1002/bit.22009

    Article  CAS  Google Scholar 

  • Sonnleitner B, Käppeli O (1986) Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng 28(6):927–937. doi:10.1002/bit.260280620

    Article  CAS  Google Scholar 

  • Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3:92. doi:10.1038/msb4100131

    Article  Google Scholar 

  • Taniguchi M, Itaya T, Tohma T, Fujii M (1997a) Ethanol production from a mixture of glucose and xylose by a novel co-culture system with two fermentors and two microfiltration modules. J Ferment Bioeng 84(1):59–64. doi:10.1016/S0922-338X(97)82787-0

    Article  CAS  Google Scholar 

  • Taniguchi M, Tohma T, Itaya T, Fujii M (1997b) Ethanol production from a mixture of glucose and xylose by co-culture of Pichia stipitis and a respiratory-deficient mutant of Saccharomyces cerevisiae. J Ferment Bioeng 83(4):364–370. doi:10.1016/S0922-338X(97)80143-2

    Article  CAS  Google Scholar 

  • van Maris A, Abbott D, Bellissimi E, van den Brink J, Kuyper M, Luttik M, Wisselink H, Scheffers W, van Dijken J, Pronk J (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek 90(4):391–418. doi:10.1007/s10482-006-9085-7

    Article  CAS  Google Scholar 

  • van Zyl W, Lynd L, den Haan R, McBride J (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235. doi:10.1007/10_2007_061

    Google Scholar 

  • Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60(10):3724–3731

    CAS  Google Scholar 

  • Yomano L, York S, Zhou S, Shanmugam K, Ingram L (2008) Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30(12):2097–2103. doi:10.1007/s10529-008-9821-3

    Article  CAS  Google Scholar 

  • Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR (2010) Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5(2):305–316. doi:10.1038/ismej.2010.117

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NSF-sponsored UMass Institute for Cellular Engineering IGERT program (Grant number DGE-0654128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Henson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanly, T.J., Urello, M. & Henson, M.A. Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures. Appl Microbiol Biotechnol 93, 2529–2541 (2012). https://doi.org/10.1007/s00253-011-3628-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3628-1

Keywords

Navigation