Skip to main content
Log in

Structure and Genetic Diversity of Natural Populations of Morus alba in the Trans-Himalayan Ladakh Region

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Sequence-related amplified polymorphism markers were used to assess the genetic structure in three natural populations of Morus alba from trans-Himalaya. Multilocation sampling was conducted across 14 collection sites. The overall genetic diversity estimates were high: percentage polymorphic loci 89.66%, Nei’s gene diversity 0.2286, and Shannon’s information index 0.2175. At a regional level, partitioning of variability assessed using analysis of molecular variance (AMOVA), revealed 80% variation within and 20% among collection sites. Pattern appeared in STRUCTURE, BARRIER, and AMOVA, clearly demonstrating gene flow between the Indus and Suru populations and a geographic barrier between the Indus-Suru and Nubra populations, which effectively hinders gene flow. The results showed significant genetic differentiation, population structure, high to restricted gene flow, and high genetic diversity. The assumption that samples collected from the three valleys represent three different populations does not hold true. The fragmentation present in trans-Himalaya was more natural and less anthropogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Carlton, Australia

    Google Scholar 

  • Andrews CA (2010) Natural selection, genetic drift, and gene flow do not act in isolation in natural populations. Nature Education Knowledge 3(10):5

    Google Scholar 

  • Awasthi AK, Nagaraju GM, Naik GV, Kanginakurdu S, Thangavelu K, Javaregowda N (2004) Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet 5:1. doi:10.1186/1471-2156-5-1

    Article  PubMed Central  PubMed  Google Scholar 

  • Baines JF, Das A, Mousset S, Stephan W (2004) The role of natural selection in genetic differentiation of worldwide populations of Drosophila ananassae. Genetics 168:1987–1998

    Article  PubMed Central  PubMed  Google Scholar 

  • Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165

    Article  PubMed  Google Scholar 

  • Baverstock PR, Moritz C (1996) Project Design. In: Hillis D, Moritz C, Mable B (eds) Molecular systematics. Sinauer Associates Inc., Sunderland, MA, USA, pp 17–27

    Google Scholar 

  • Bhattacharya E, Ranade SA (2001) Molecular distinction amongst varieties of mulberry using RAPD and DAMD profiles. BMC Plant Biol 1:3. doi:10.1186/1471-2229-1-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattacharya E, Dandin SB, Ranade SA (2005) Single primer amplification reaction methods reveal exotic and indigenous mulberry varieties are similarly diverse. J Biosci 30:669–677

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Shearman RC, Parmaksiz I, Dweikat I (2004) Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theor Appl Genet 109:280–288

    Article  CAS  PubMed  Google Scholar 

  • Cao PJ, Yao QF, Ding BY, Zeng HY, Zhong YX, Fu CX, Jin XF (2006) Genetic diversity of Sinojackia dolichocarpa (Styracaceae), a species endangered and endemic to China, detected by inter-simple sequence repeat (ISSR). Biochem Syst Ecol 34:231–239

    Article  CAS  Google Scholar 

  • Cardoso SRS, Provan J, Lira CDF, Pereira LDOR, Ferreira PCG, Cardoso MA (2005) High levels of genetic structuring as a result of population fragmentation in the tropical tree species Caesalpinia echinata Lam. Biodivers Conserv 14:1047–1057

    Article  Google Scholar 

  • Ding G, Zhang D, Ding X, Zhou Q, Zhang W, Li X (2008) Genetic variation and conservation of the endangered Chinese endemic herb Dendrobium officinale based on SRAP analysis. Plant Syst Evol 276:149–156

    Article  Google Scholar 

  • Earl DA, Von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ewing EP (1979) Genetic variation in a heterogenous environment VII. Temporal and spatial heterogeneity in infinite populations. Am Nat 114(2):197–212

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107(2):271–282

    CAS  PubMed  Google Scholar 

  • Gillespie JH, Turelli M (1989) Genotype environment interaction and the maintenance of polygenic variation. Genetics 121:129–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamrick JL (1983) The distribution of genetic variation within and among natural plant populations. In: Schonewald-Cox CM, Chambers SM, McBryde B, Thomas WL (eds) Genetics and conservation. Benjamin/Cummings, Menlo Park, CA, USA, pp 335–348

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Phil Trans R Soc Lond B 351:1291–1298

    Article  Google Scholar 

  • Hedrick PW, Ginevan ME, Ewing EP (1976) Genetic polymorphisms in heterogeneous environments. Ann Rev Ecol Syst 7:1–32

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Kafkas S, Ozgen M, Dogan Y, Ozcan B, Ercisxli S, Serce S (2008) Molecular characterization of mulberry accessions in Turkey by AFLP markers. J Am Soc Hortic Sci 133(4):593–597

    Google Scholar 

  • Kar PK, Srivastava PP, Awasthi AK, Urs SR (2008) Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genet Genomes 4:75–83

    Article  Google Scholar 

  • Korekar G, Dwivedi SK, Singh H, Srivastava RB, Stobdan T (2013) Germination of Hippophae rhamnoides L. seed after 10 years of storage at ambient condition in cold arid trans-Himalayan Ladakh region. Curr Sci 104(1):110–114

    Google Scholar 

  • Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392

    Article  PubMed Central  Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273

    Article  CAS  PubMed  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Manni F, Guérard E, Heyer E (2004) Geographic pattern of (genetic, morphologic, linguistic) variation: how barriers can be detected by ‘Monmonier’s algorithm’. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • Melendez-Ackerman EJ, Sperenza P, Kress WJ, Rohnea L, Toledo E, Cortes C, Treece M, Gitzendanner M, Soltis P, Soltis D (2005) Microevolutionary processes inferred from AFLP and morphological variation in Heliconia bihai (Heliconiaceae). Int J Plant Sci 166:781–794

    Article  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm for plants. J Ecol 94:1233–1248

    Article  Google Scholar 

  • Parker KC (1991) Topography, substrate and vegetation patterns in northern Sonoran desert. J Biogeogr 18:151–163

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pfeifer M, Jetschke G (2006) Influence of geographical isolation on genetic diversity of Himantoglossum hircinum (Orchidaceae). Folia Geobot 41:3–20

    Article  Google Scholar 

  • Pometti CL, Bessega CF, Vilardi JC, Saidman BO (2012) Landscape genetic structure of natural populations of Acacia caven in Argentina. Tree Genet Genomes 8:911–924

    Article  Google Scholar 

  • Prentice HC, Lonn M, Rosquist G, Ihse M, Kindstron M (2006) Gene diversity. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal spacer length in barley: mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8104–8118

    Article  Google Scholar 

  • Schuster WSF, Sandquist DR, Phillips SL, Ehleringer SL (1994) High levels of genetic variation in populations of four dominant aridplant plant species in Arizona. J Arid Environ 27:159–167

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Sork VL, Nason J, Campbell DR, Fernandez JF (1999) Landscape approaches to historical and contemporary gene flow in plants. Trends Ecol Evol 14:219–224

    Article  PubMed  Google Scholar 

  • Squirrell J, Hollingsworth PM, Bateman RM, Dickson JH, Light MHS, Macconnaill M, Tebbit MC (2001) Partitioning and diversity of nuclear and organelle markers in native and introduced populations of Epipactis helleborine (Orchidaceae). Am J Bot 88:1409–1418

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PP, Vijayan K, Awasthi AK, Sratchandra B (2004) Genetic analysis of Morus alba through RAPD and ISSR markers. Indian J Biotechnol 3:527–532

    CAS  Google Scholar 

  • Suarez-Montes P, Fornoni J, Nunez-Farfan J (2011) Conservation genetics of the endemic Mexican Heliconia uxpanapensis in the Los Tuxtlas Tropical rain forest. Biotropica 43(1):114–121

    Article  Google Scholar 

  • Taylor PE, Card G, House J, Dickinson MH, Flagan RC (2006) High-speed pollen release in the white mulberry tree, Morus alba L. Sex Plant Reprod 19:19–24

    Article  Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0, distributed by the author. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium

  • Vijayan K (2004) Genetic relationships of Japanese and Indian mulberry (Morus spp.) genotypes revealed by DNA fingerprinting. Plant Syst Evol 243:221–232

    Article  CAS  Google Scholar 

  • Vijayan K, Chatterjee SN (2003) ISSR profiling of Indian cultivars of mulberry (Morus spp.) and its relevance to breeding programs. Euphytica 131:53–63

    Article  CAS  Google Scholar 

  • Vijayan K, Awasthi AK, Srivastava PP, Saratchandra B (2004a) Genetic analysis of Indian mulberry varieties through molecular markers. Hereditas 141:8–14

    Article  CAS  PubMed  Google Scholar 

  • Vijayan K, Kar PK, Tikader A, Srivastava PP, Awasthi AK, Saratchandra B (2004b) Molecular evaluation of genetic variability in wild populations of mulberry (Morus serrata Roxb.). Plant Breed 123:568–572

    Article  CAS  Google Scholar 

  • Vijayan K, Srivastava PP, Awasthi AK (2004c) Analysis of phylogenetic relationship among five mulberry (Morus) species using molecular markers. Genome 47:439–448

    Article  CAS  PubMed  Google Scholar 

  • Vijayan K, Tikader A, Kar PK, Srivastava PP, Awasthi AK, Thangavelu K, Saratchandra B (2006) Assessment of genetic relationships between wild and cultivated mulberry (Morus) species using PCR based markers. Genet Resour Crop Evol 53:873–882

    Article  CAS  Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic method for identifying the numbers of gene pool and their degree of connectivity. Mol Ecol 16:1419–1439

    Article  Google Scholar 

  • Wood AR, Gardner JPA (2007) Small spatial scale population genetic structure in two limpet species endemic to the Kermadec Islands, New Zealand. Mar Ecol Prog Ser 349:159–170

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao XH, Ye QG, Kang M, Huang HW (2007) Microsatellite analysis reveals interpopulation differentiation and gene flow in the endangered tree Changiostyrax dolichocarpa (Styracaceae) with fragmented distribution in central China. New Phytol 176:472–480

    Article  PubMed  Google Scholar 

  • Yeaman S, Jarvis A (2006) Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine. Proc R Soc B 273:1587–1593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Calgary

    Google Scholar 

  • Young AG, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–441

    Article  CAS  PubMed  Google Scholar 

  • Zhao WG, Pan YL (2004) Genetic diversity of genus Morus revealed by RAPD markers in China. Int J Agric Biol 6:950–954

    CAS  Google Scholar 

  • Zhao WG, Zhou ZH, Miao XX, Wang SB, Zhang L, Pan YL, Huang YP (2006) Genetic relatedness among cultivated and wild mulberry (Moraceae: Morus) as revealed by inter simple sequence repeat analysis in China. Can J Plant Sci 86:251–257

    Article  CAS  Google Scholar 

  • Zhao WG, Zhou ZH, Miao XX, Zhang Y, Wang SB, Huang JH, Xiang H, Pan YL, Huang YP (2007a) A comparison of genetic variation among wild and cultivated Morus species (Moraceae: Morus) as revealed by ISSR and SSR markers. Biodivers Conserv 6:275–282

    Google Scholar 

  • Zhao W, Wang Y, Chen T, Ra G, Wang XM, Qi JL, Pang YJ, Wang SS, Li ZH, Huang YP, Pan Y, Yang YH (2007b) Genetic structure of mulberry from different ecotypes revealed by ISSRs in China: an implications for conservation of local mulberry varieties. Scientia Hort 115:47–55

    Article  CAS  Google Scholar 

  • Zhao W, Fang R, Pan Y, Yang Y, Chung JW, Chung IM, Park YJ (2009) Analysis of genetic relationships of mulberry (Morus L.) germplasm using sequence-related amplified polymorphism (SRAP) markers. Afr J Biotechnol 8(11):2604–2610

    CAS  Google Scholar 

  • Zhou TH, Dong SS, Li S, Zhao GF (2012) Genetic structure within and among population of Saruma henryi, an endangered plant endemic to China. Biochem Genet 50:146–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

P. K. Bajpai is thankful to the Defence Research and Development Organisation, New Delhi, for providing a Senior Research Fellowship and to the inhabitants of the surveyed areas for their cooperation during the field study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsering Stobdan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Supplementary Fig. 1

Mantel test showing correlation between geographic distance (X-axis) and genetic distance (Y-axis) matrices. Mantel test Rxy = 0.409; P value = 0.02 (JPEG 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajpai, P.K., Warghat, A.R., Sharma, R.K. et al. Structure and Genetic Diversity of Natural Populations of Morus alba in the Trans-Himalayan Ladakh Region. Biochem Genet 52, 137–152 (2014). https://doi.org/10.1007/s10528-013-9634-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-013-9634-5

Keywords

Navigation