Skip to main content
Log in

Genetic Structure of Tree and Shrubby Species Among Anthropogenic Edges, Natural Edges, and Interior of an Atlantic Forest Fragment

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Two species, Psychotria tenuinervis (shrub, Rubiaceae) and Guarea guidonia (tree, Meliaceae), were used as models to compare the genetic structure of tree and shrubby species among natural edges, anthropogenic edges, and a fragment interior. There were significant differences between two genetic markers. For isozymes, P. tenuinervis presented greater heterozygosity (expected and observed) and a higher percentage of polymorphic loci and median number of alleles than G. guidonia. For microsatellites, there was no difference in genetic variability between the species. Only P. tenuinervis, for isozymes, showed differences in genetic variability among the three habitats. There was no genetic structure (F ST < 0.05) among habitats in both plant species for both genetic markers. Isozymes showed great endogamy for both plant species, but not microsatellites. The forest fragmentation may have negative effects on both spatial (among edges and interior) and temporal genetic variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    Article  PubMed  Google Scholar 

  • Aizen MA, Feinsinger P (1994a) Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina. Ecology 75:330–351

    Article  Google Scholar 

  • Aizen MA, Feinsinger P (1994b) Habitat fragmentation, native insect pollinator, and feral honey bees in Argentina “Chaco Serrano”. Ecol Appl 4:378–392

    Article  Google Scholar 

  • Alvarez-Buylla ER, Garcia-Barrios R, Lara-Moreno C, Martinez-Ramos M (1996) Demographic and genetic models in conservation biology: applications and perspectives for tropical rain forest tree species. Annu Rev Ecol Syst 27:387–421

    Article  Google Scholar 

  • Barroso GM (1991) Sistemática De Angiospermas Do Brasil. Imprensa Universitária, Universidade Federal De Viçosa, Viçosa

    Google Scholar 

  • Bawa KS (1990) Plant-pollinator interactions in tropical rain forests. Annu Rev Ecol Syst 21:399–422

    Article  Google Scholar 

  • Bawa KS, Beach JH (1983) Self-incompatibility systems in the Rubiceae of a tropical lowland wet forest. Am J Bot 70:1281–1288

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2001) Genetix 4.02, Logiciel Sous Windows Tm Pour La Génétique Des Populations. Laboratoire Génome, Populations, Interactions, Cnrs Umr 5000. Université De Montpellier Ii, Montpellier, France

    Google Scholar 

  • Bierregaard RO Jr, Lovejoy TE, Kapos V, Santos AA, Hutchings RW (1992) The biological dynamics of tropical rainforest fragments. Bioscience 42:859–866

    Article  Google Scholar 

  • Billotte N, Lagoda PJL, Risterucci AM, Baurens FC (1999) Microssatellite-enriched libraries: applied methodology for the development of Ssr markers in tropical crops. Fruits 54:277–288

    CAS  Google Scholar 

  • Brasil R (1983) Levantamento De Recursos Naturais. V.32. Projeto Radambrasil, Rio De Janeiro

    Google Scholar 

  • Cardozo MA (1994) Germinação De Sementes De Virola Surinamennsis (Rol.) Warb. (Myristicaceae) E Guarea Guidonia (L.) Sleumer (Meliaceae). Rev Bras Sem 16:1–5

    Google Scholar 

  • Carlini-Garcia L, Vencovsky R, Coelho ASG (2001) Método Bootstrap Aplicados Em Níveis De Reamostragem Na Estimação De Parâmetros Genéticos Populacionais. Sci Agric 58:785–793

    Article  Google Scholar 

  • Castelo AT, Martins W, Gao GR (2002) Troll–tandem repeat occurence locator. Bioinformatics 18:634–636

    Article  CAS  PubMed  Google Scholar 

  • Clayton J, Tretiak D (1972) Amine-citrate buffers for Ph control in starch gel electrophoresis. J Fish Res Board Can 29:1169–1172

    CAS  Google Scholar 

  • Combes MC, Andrzejewski S, Anthony F, Bertrand B, Rovelli P, Graziosis G, Lashermes P (2000) Characterization of microsatellite loci in Coffea Arabica and related coffee species. Mol Ecol 9:1178–1180

    Article  CAS  PubMed  Google Scholar 

  • Corbet SA (1990) Pollination and the weather. Isr J Bot 39:13–30

    Google Scholar 

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14:342–355

    Article  Google Scholar 

  • Degen B, Streiffà R, Ziegenhagen B (1999) Comparative study of genetic variation and differentiation of two pedunculate oak (Quercus Robur) stands using microsatellite and allozyme loci. Heredity 83:597–603

    Article  PubMed  Google Scholar 

  • Dewey SE, Heywood JS (1988) Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution 42:834–838

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fore SA, Hickey RJ, Vankat JL, Guttman SI, Schaefer RL (1992) Genetic structure after forest fragmentation: a landscape ecology perspective on Acer Saccharum. Can J Bot 70:1659–1668

    Google Scholar 

  • Garibaldi LA, Aizen MA, Cunningham SA, Klein AM (2009) Pollinator shortage and global crop yield looking at the whole spectrum of pollinator dependency. Commun Integr Biol 2:37–39

    Article  PubMed  Google Scholar 

  • Gentry AH, Dodson C (1987) Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19:149–156

    Article  Google Scholar 

  • Gomes DMS, Mantovani A, Vieira RC (1995) Anatomia Foliar De Psychotria tenuinervis Muell. Arg. E Psychotria stenocalix Muell. Arg. (Rubiaceae). Arq Biol Tecn 38:15–33

    Google Scholar 

  • Goudet J (1995) Fstat (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Hamilton CW (1990) Variations on a distylous theme in a mesoamerican Psychotria Subgenus Psychotria (Rubiaceae). Mem N Y Bot Gard 55:62–75

    Google Scholar 

  • Hamrick JL (1982) Plant population genetics and evolution. Am J Bot 69:1685–1693

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, pp 145–162

    Google Scholar 

  • Hamrick JL, Loveless MD (1986) Isozyme variation in tropical trees: procedures and preliminary results. Biotropica 18:201–207

    Article  Google Scholar 

  • Harper KA, MacDonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen P (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782

    Article  Google Scholar 

  • Isagi Y, Tateno R, Matsuki Y, Hirao A, Watanabe S, Shibata M (2007) Genetic and reproductive consequences of forest fragmentation for populations of Magnolia obovata. Ecol Res 22:382–389

    Article  Google Scholar 

  • Joly AB (1991) Botânica: Introdução a Taxonomia Vegetal. Companhia Editora Nacional, São Paulo

    Google Scholar 

  • Kettle CJ, Hollingsworth M, Jaffre T, Moran B, Ennos RA (2007) Identifying the early genetic consequences of habitat degradation in a highly threatened tropical conifer, Araucaria nemorosa laubenfels. Mol Ecol 16:3581–3591

    Article  CAS  PubMed  Google Scholar 

  • Kramer AT, Ison JL, Ashley MV, Howe H (2008) The paradox of forest fragmentation genetics. Conserv Biol 22:878–885

    Article  PubMed  Google Scholar 

  • Loiselle BA, Sork VL, Graham C (1995a) Comparison of genetic variation in bird-dispersed shrubs of tropical wet forest. Biotropica 27:487–494

    Article  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995b) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Lorenzi H (1992) Árvores brasileiras. Editora Plantarum, São Paulo

    Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273

    Article  CAS  PubMed  Google Scholar 

  • Manly B (1997) Randomization, bootstrap and Monte Carlo methods in biology. Chapman and Hall, London

    Google Scholar 

  • Matlack GR (1994) Vegetation dynamics of the forest edge—trends in space and successional time. J Ecol 82:113–123

    Article  Google Scholar 

  • Metzger JP (1999) Estrutura Da Paisagem E Fragmentação: Análise Bibliográfica. An Acad Bras Cienc 71:445–463

    Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Tree 10:58–62

    Google Scholar 

  • Nason JD, Hamrick JL (1997) Reproductive and genetic consequences of forest fragmentation? Two case studies of neotropical canopy trees. J Hered 88:264–276

    Google Scholar 

  • Nason JD, Aldrich PR, Hamrick JL (1997) Dispersal and the dynamic of genetic structure in fragmented tropical tree populations. In: Laurance WF, Bierregaard RO (eds) Tropical forest remnants: ecology, management, conservation of fragmented communities. University of Chicago Press, Chicago, pp 304–320

    Google Scholar 

  • Paz H, Mazer SJ, Martinez-Ramos M (1999) Seed mass, seedling emergence and environmental factors in seven rain forest Psychotria (Rubiaceae). Ecology 80:1594–1606

    Google Scholar 

  • Perez-Nasser N, Eguiarte LE, Piñero D (1993) Mating system and genetic structure of the dystilous tropical tree Psychotria faxlucens (Rubiaceae). Am J Bot 80:45–52

    Article  Google Scholar 

  • Poulin B, Wright SJ, Lefebvre G, Calderon O (1999) Interspecific synchrony and asynchrony in the fruiting phenologies of congeneric bird-dispersed plants in Panama. J Trop Ecol 15:213–217

    Article  Google Scholar 

  • Rabasa SG, Gutierrez D, Escudero A (2009) Temporal variation in the effects of habitat fragmentation on reproduction of the Mediterranean shrub Colutea hispanica. Plant Ecol 200:241–254

    Article  Google Scholar 

  • Ramos FN, Santos FAM (2005) Phenology of Psychotria tenuinervis (Rubiaceae) in Atlantic forest fragments. Can J Bot 83:1305–1316

    Article  Google Scholar 

  • Ramos FN, Santos FAM (2006) Floral visitors and pollination of Psychotria tenuinervis (Rubiaceae): distance from the anthropogenic and natural edges of an Atlantic forest fragment. Biotropica 38:1–7

    Article  Google Scholar 

  • Ramos FN, José J, Solferini VN, Santos FAM (2007) Quality of seeds produced by Psychotria tenuinervis (Rubiaceae): distance from anthropogenic and natural edges of Atlantic forest fragment. Biochem Genet 45:441–458

    Article  CAS  PubMed  Google Scholar 

  • Ramos FN, Zucchi MI, Solferini VN, Santos FAM (2008) Mating systems of Psychotria tenuinervis (Rubiaceae): distance from anthropogenic and natural edges of Atlantic forest fragment. Biochem Genet 46:88–100

    Article  CAS  PubMed  Google Scholar 

  • Raybould AF, Mogg RJ, Clarke RT, Gliddon CJ, Gray AJ (1999) Variation and population structure at microsatellite and isozyme loci in wild cabbage (Brassica oleracea L.) in Dorset (UK). Genet Resour Crop Evol 46:351–360

    Article  Google Scholar 

  • Ribeiro JEL, Hopkins MJG, Procópio LC (1999) Flora da reserva ducke. Inpa-Dfid, Manaus

    Google Scholar 

  • Rice WR (1989) Analyzing table of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rovelli P, Mettulio R, Anthony F, Anzueto F, Lashermes P, Graziosi G (2000) Microsatellites in Coffea Arabica. In: Sera T, Soccol CR, Pandey A, Roussos S (eds) Coffee biotechnology and quality: proceedings of the 3rd international seminar on biotechnology in the coffee agroindustry. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 123–133

    Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Shapcott A (1998) Vagile but inbred: patterns of inbreeding and the genetic structure within populations of the monsoon rain forest tree Syzygium Nervosum (Myrtaceae) in Northern Australia. J Trop Ecol 14:595–614

    Article  Google Scholar 

  • Soltis DE, Haufler CH, Darrow DC, Gastony GJ (1983) Starch gel eletrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers and stained schedules. Am Fern J 73:9–27

    Article  Google Scholar 

  • Streiff R, Labbe T, Bacilieri R, Steinkellner H, Glossl ÈJ, Kremer A (1998) Within-population genetic structure in Quercus Robur L and Quercus Petraea (Matt.) Liebl. Assessed with isozymes and microsatellites. Mol Ecol 7:317–328

    Article  Google Scholar 

  • Sun M, Ganders FR (1990) Outcrossing rates and allozyme variation in rayed and rayless morphs of Bidens pilosa. Heredity 64:139–143

    Article  Google Scholar 

  • Templeton AR, Shaw K, Routman E, Davis SK (1990) The genetic consequences of habitat fragmentation. Ann Mo Bot Gard 77:13–27

    Article  Google Scholar 

  • Veanello RB, Alvez AR (1991) Meteorologia básica e aplicações. Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  • Virillo CB, Ramos FN, Castro CC, Semir J (2007) Floral biology and breeding system of Psychotria tenuinervis Muell.Arg. (Rubiaceae) in the Atlantic rain forest, SE, Brazil. Acta Bot Bras 21:879–884

    Article  Google Scholar 

  • Ward RD, Warwick T (1980) Genetic differentiation in the molluscan species Littorina rudis and Littorina arcana (Prosobranchia-Littorinidae). Biol J Linn Soc 14:417–428

    Article  Google Scholar 

  • Wright S (1978) Evolution and the genetics of population: variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  • Young AG, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Tree 11:413–418

    Google Scholar 

  • Young AG, Brown AHD, Zich FA (1999) Genetic structure of fragmented populations of the endangered daisy Rutidosis leptorrhynchoides. Conserv Biol 15:256–265

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

The authors thank Aluana G. Abreu and Sónia C. S. Andrade for help in the laboratory and Jim Hesson for correcting the English. This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant no. 150300/2004-2), and research aid no. 2001/11225-6 from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Nunes Ramos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, F.N., de Lima, P.F., Zucchi, M.I. et al. Genetic Structure of Tree and Shrubby Species Among Anthropogenic Edges, Natural Edges, and Interior of an Atlantic Forest Fragment. Biochem Genet 48, 215–228 (2010). https://doi.org/10.1007/s10528-009-9311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-009-9311-x

Keywords

Navigation