Skip to main content
Log in

Quality of Seeds Produced by Psychotria tenuinervis (Rubiaceae): Distance from Anthropogenic and Natural Edges of Atlantic Forest Fragment

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

The aim of this study was to investigate whether there were differences in the genetic variability and rate and velocity of the seed germination produced by Psychotria tenuinervis located at anthropogenic edges, natural edges, and in the forest interior. The populations of P. tenuinervis showed no differences in genetic variability or structure among the three habitats. There was, however, an indication of inbreeding, which was significantly higher in natural edges than in anthropogenic edges and the forest interior. Within-habitat variation was considerable, but there were no differences in seed mass or rate and velocity of germination among the three habitats. These results suggest that seed characteristics were not influenced by the genetic pattern of P. tenuinervis and that other characteristics of the forest fragment, such as gaps, edge age, and type of matrix exert more influence on seed mass and germination than the distance from the edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Ågren J (1996) Population size, pollinator limitation, and seed set in the self-incompatible herb Lythrum salicaria. Ecology 77:1779–1790

    Article  Google Scholar 

  • Aguilar R, Galetto L (2004) Effects of forest fragmentation on male and female reproductive success in Cestrum parqui (Solanaceae). Oecologia 138:513–520

    Article  PubMed  Google Scholar 

  • Aizen MA, Feinsinger P (1994a) Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina. Ecology 75:330–351

    Article  Google Scholar 

  • Aizen MA, Feinsinger P (1994b) Habitat fragmentation, native insect pollinator, and feral honey bees in Argentina “Chaco Serrano”. Ecol Aplic 4:378–392

    Article  Google Scholar 

  • Alvarez-Buylla ER, Garcia-Barrios R, Lara-Moreno C, Martinez-Ramos M (1996) Demographic and genetic models in conservation biology: applications and perspectives for tropical rain forest tree species. Ann Rev Ecol Syst 27:387–421

    Article  Google Scholar 

  • Bawa KS (1990) Plant-pollinator interactions in tropical rain forests. Ann Rev Ecol Syst 21:399–422

    Article  Google Scholar 

  • Bawa KS, Beach JH (1983) Self-incompatibility systems in the Rubiaceae of a tropical lowland wet forest. Am J Bot 70:1281–1288

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2001) Genetix 4.02, logiciel sous Windows pour la génétique des populations. Laboratoire Génome, populations, interactions, CNRS UMR 5000. Université de Montpellier II, Montpellier, France

  • Bierregaard RO Jr, Lovejoy TE, Kapos V, Santos AA, Hutchings RW (1992) The biological dynamics of tropical rainforest fragments. Bioscience 42:859–866

    Article  Google Scholar 

  • Cascante A, Quesada M, Lobo JJ, Fuchs EA (2002) Effects of dry tropical forest fragmentation on the reproductive success and genetic structure of the tree Samanea saman. Cons Biol 16:137–147

    Article  Google Scholar 

  • Casenave JL, Pelotto JP, Caziani SM, Mermoz M, Protomastro J (1998) Response of avian assemblages to a natural edge in a Chaco semiarid forest in Argentina. Auk 115:425–435

    Google Scholar 

  • Chakraborty R, Haag M, Ryman N, Stahl G (1982) Hierarchical gene diversity analysis and its application to brown trout population data. Hereditas 97:17–21

    Google Scholar 

  • Corbet SA (1990) Pollination and the weather. Isr J Bot 39:13–30

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Crow J, Kimura M (1970) An introduction to population genetics theory. Burgess Publishing, Minneapolis

    Google Scholar 

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Cons Biol 14:342–355

    Article  Google Scholar 

  • Dewey SE, Heywood JS (1988) Spatial genetic structure in a population of Psychotria nervosa, I: distribution of genotypes. Evolution 42:834–838

    Article  Google Scholar 

  • Didham RK (1996) Insects in fragmented forests: a functional approach. Trends Ecol Evol 11:255–260

    Article  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Ann Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Fenner M (1985) Seed ecology. Chapman and Hall, New York

    Google Scholar 

  • Fischer M, Matthies D (1997) Mating structure and inbreeding and outbreeding depression in the rare plant Gentianella germanica (Gentianaceae). Am J Bot 84:1685–1692

    Article  Google Scholar 

  • Fore SA, Hickey RJ, Vankat JL, Guttman SI, Schaefer RL (1992) Genetic structure after forest fragmentation: a landscape ecology perspective on Acer saccharum. Can J Bot 70:1659–1668

    Google Scholar 

  • Ghazoul J, McLeish M (2001) Reproductive ecology of tropical forest trees in logged and fragmented habitats in Thailand and Costa Rica. Plant Ecol 153:335–345

    Article  Google Scholar 

  • Goudet J (1995) Fstat (version 1.2): a computer program to calculate f-statistics. J Hered 86:485–486

    Google Scholar 

  • Groom MJ (1998) Allele effects limit population viability of an annual plant. Am Nat 151:487–496

    Article  PubMed  CAS  Google Scholar 

  • Hamilton CW (1990) Variations on a distylous theme in a mesoamerican Psychotria subgenus Psychotria (Rubiaceae). Mem N Y Bot Gard 55:62–75

    Google Scholar 

  • Hamrick JL, Godt J (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, MA, pp 43–63

    Google Scholar 

  • Hamrick JL, Loveless MD (1986) Isozyme variation in tropical trees: procedures and preliminary results. Biotropica 18:201–207

    Article  Google Scholar 

  • Hamrick JL, Loveless MD (1989) The genetic structure of tropical tree populations: associations with reproductive biology. In: Bock JH, Linhart YB (eds) The evolutionary ecology of plants. Westview Press, Boulder, pp 129–146

    Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic variation in woody plant species. New Forest 6:95–124

    Article  Google Scholar 

  • Herrera CM (2000) Flower-to-seedling consequences of different pollination regimes in an insect-pollinated shrub. Ecology 81:15–29

    Article  Google Scholar 

  • Heywood JS, Fleming TH (1986) Patterns of allozyme variation in three Costa Rican species of Piper. Biotropica 18:208–213

    Article  Google Scholar 

  • Kato E, Hiur T (1999) Fruit set in Styrax obassia (Styracaceae): the effect of light availability, display size, and local floral density. Am J Bot 86:495–501

    Article  PubMed  Google Scholar 

  • Kery M, Matthies D, Spillmann HH (2000) Reduced fecundity and offspring performance in small populations of the declining grassland plants Primula veris and Gentiana lutea. J Ecol 88:17–30

    Article  Google Scholar 

  • Labouriau LG (1970) On the physiology of seed germination in Vicia graminea S.M.-I. An Acad Brasil Ciênc 42:235–262

    Google Scholar 

  • Loiselle BA, Sork VL, Graham C (1995a) Comparison of genetic variation in bird-dispersed shrubs of tropical wet forest. Biotropica 27:487–494

    Article  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995b) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Lott RH, Jackes BR (2001) Isozymes analysis of rain forest plants using immature seeds. Biotropica 33:197–204

    Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Ann Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Mattlack GR (1994) Vegetation dynamics of the forest edge-trends in space and sucessional time. J Ecol 82:113–123

    Article  Google Scholar 

  • Meleason MA, Quinn JM (2004) Influence of riparian buffer width on air temperature at Whangapoua Forest, Coromandel Peninsula, New Zealand. For Ecol Manag 191:365–371

    Article  Google Scholar 

  • Menges ES (1991) Seed germination percentage increases with population size in a fragmented prairie species. Cons Biol 5:158–164

    Article  Google Scholar 

  • Metzger JP (1999) Estrutura da paisagem e fragmentação: Análise bibliográfica. Na Acad Bras Ciênc 71:445–463

    Google Scholar 

  • Moraes PLR, Derbyshire MTVC (2003) Diferenciação genética e diversidade em populações naturais de Cryptocarya aschersoniana mez (Lauraceae). Biota Neot 3: 9p. http://www.biotaneotropica.org.br/v3n1/pt/abstract?article+BN01803012003

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  Google Scholar 

  • Murcia C (1996) Forest fragmentation and the pollination of neotropical plants. In: Schelhas J, Greenberg R (eds) Forest patches in tropical landscapes. Island Press, Washington, D.C., pp 19–36

    Google Scholar 

  • Nason JD, Aldrich PR, Hamrick JL (1997) Dispersal and the dynamics of genetic structure in fragmented tropical tree populations. In: Laurance WF, Bierregaard RO (eds) Tropical forest remnants: ecology, management and conservation of fragmented communities. University of Chicago Press, Chicago, pp 304–320

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  Google Scholar 

  • Oliveira EC, Piña-Rodrigues FCM, Figliolia MB (1989) Propostas para a padronização de metodologias em analise de sementes florestais. Ver Bras Sem 11:1–41

    Google Scholar 

  • Paz H, Mazer SJ, Martinez-Ramos M (1999) Seed mass, seedling emergence and environmental factors in seven rain forest Psychotria (Rubiaceae). Ecology 80:1594–1606

    Google Scholar 

  • Peakall R, Smouse PE (2001) GenAlEx V5: genetic analysis in excel. Population genetic software for teaching and research. Australian National University, Canberra, Australia. http://www.anu.edu.au/BoZo/GenAlEx/

  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57:1182–1195

    PubMed  Google Scholar 

  • Perez-Nasser N, Eguiarte LE, Piñero D (1993) Mating system and genetic structure of the distylous tropical tree Psychotria faxlucens (Rubiaceae). Am J Bot 80:45–52

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Poulin B, Wright SJ, Lefebvre G, Calderon O (1999) Interspecific synchrony and asynchrony in the fruiting phenologies of congeneric bird-dispersed plants in Panama. J Trop Ecol 15:213–217

    Article  Google Scholar 

  • Quesada M, Stoner KE, Lobo AJ, Herreras-Diego Y, Palacios-Guevara C, Munguia-Rosas MA, Salazar KAO, Rosas-Guerrero VR (2004). Effects of forest fragmentation on pollinator activity and consequences for plant reproductive success and mating patterns in bat-pollinated bombacaceous trees. Biotropica 36:131–138

    Google Scholar 

  • Radambrasil (1983) Levantamento de recursos naturais. v. 32. Projeto Radambrasil. Rio de Janeiro

  • Ramos FN, Santos FAM (2005) Phenology of Psychotria tenuinervis (Rubiaceae) in Atlantic forest fragments: regional and local scale. Can J Bot 83:1305–1316

    Article  Google Scholar 

  • Ramos FN, Santos FAM (2006) Floral visitors and pollination of Psychotria tenuinervis (Rubiaceae): distance from the anthropogenic and natural edges of an Atlantic forest fragment. Biotropica 38:383–389

    Article  Google Scholar 

  • Rice WR (1989) Analyzing table of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rocha OJ, Lobo JA (1996) Genetic variation and differentiation among five populations of the guanacaste tree (Enterolobium cyclocarpum) in Costa Rica. Intern J Plant Sci 157:234–239

    Article  Google Scholar 

  • Rosa SGT, Ferreira AG (2001) Germinação de sementes de plantas medicinais lenhosas. Acta Bot Bras 15:147–154

    Article  Google Scholar 

  • Sassaki RM, Rondon JN, Zaidan LBP, Felippe GM (1999) Germination of seeds from herbaceous plants artificially stored in Cerrado soil. Rev Bras Biol 59:271–279

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Cons Biol 5:18–32

    Article  Google Scholar 

  • Shapcott A (1998) Vagile but inbred: patterns of inbreeding and the genetic structure within populations of the monsoon rain forest tree Syzygium nervosum (Myrtaceae) in northern Australia. J Trop Ecol 14:595–614

    Article  Google Scholar 

  • Silvertown JW, Lovelt-Doust J (1993) Introduction to plant population biology. Blackwell Science, London

    Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf JF (1995) Biometrics: the principles and practice of statistics in biological research. W. H. Freeman and Co., London

    Google Scholar 

  • Soltis DE, Haufler CH, Darrow DC, Gastony GJ (1983) Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers and stained schedules. Am Fern J 73:9–27

    Article  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440

    Article  Google Scholar 

  • Sun M, Ganders FR (1990) Outcrossing rates and allozyme variation in rayed and rayless morphs of Bidens pilosa. Heredity 64:139–143

    Google Scholar 

  • Templeton AR, Shaw K, Routman E, Davis SK (1990) The genetic consequences of habitat fragmentation. Ann Miss Bot Gard 77:13–27

    Article  Google Scholar 

  • Veanello RB, Alvez AR (1991) Meteorologia básica e aplicações. Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  • Ward RD, Warwick T (1980) Genetic differentiation in the molluscan species Littorina rudis and Littorina arcana (Prosobranchia-Littorinidae). Biol J Linn Soc 14:417–428

    Google Scholar 

  • Waser NM, Price MV (1991) Outcrossing distance effects in Delphinium nelsonii: pollen loads, pollen tubes, and seed set. Ecology 72:171–179

    Article  Google Scholar 

  • White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Nat Acad Sci 99:2038–2042

    Article  PubMed  CAS  Google Scholar 

  • Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations: variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

The authors thank Vanessa Rosseto, Maíra T. Ribeiro, and Carolina B. Virillo for help with the field work, and Aluana G. Abreu and Sónia C. S. Andrade for help in the laboratory. We also thank Aluana G. Abreu, Fabio R. Scarano, Flavia F. Jesus, Keith S. B. Junior, and Maria I. Zucchi for valuable comments on the manuscript, and Stephen Hyslop and Jim Hesson for correcting the English. Pedro L. R. Moraes helped with some analyses, and J. Martin Pujolar and M. Elenas Cagigas helped with the Negst program. This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant no. 141569/2000-0), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant no. 01/11225-6), and Coordenação de Aperfeiçoamento de Pesso de Nível Superior (PROAP- CAPES). F. A. M. Santos was supported by a grant from CNPq (grant no. 307132/2004-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Nunes Ramos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, F.N., José, J., Solferini, V.N. et al. Quality of Seeds Produced by Psychotria tenuinervis (Rubiaceae): Distance from Anthropogenic and Natural Edges of Atlantic Forest Fragment. Biochem Genet 45, 441–458 (2007). https://doi.org/10.1007/s10528-007-9087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-007-9087-9

Keywords

Navigation