Skip to main content
Log in

Streamwise Vortices and Velocity Streaks in a Locally Drag-Reduced Turbulent Boundary Layer

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This work aims to understand the changes associated with the near-wall streaky structures in a turbulent boundary layer (TBL) where the local skin-friction drag is substantially reduced. The Reynolds number is R e 𝜃 = 1000 based on the momentum thickness or R e τ = 440 based on the friction velocity of the uncontrolled flow. The TBL is perturbed via a local surface oscillation produced by an array of spanwise-aligned piezo-ceramic (PZT) actuators and measurements are made in two orthogonal planes using particle image velocimetry (PIV). Data analyses are conducted using the vortex detection, streaky structure identification, spatial correlation and proper orthogonal decomposition (POD) techniques. It is found that the streaky structures are greatly modified in the near-wall region. Firstly, the near-wall streamwise vortices are increased in number and swirling strength but decreased in size, and are associated with greatly altered velocity correlations. Secondly, the velocity streaks grow in number and strength but contract in width and spacing, exhibiting a regular spatial arrangement. Other aspects of the streaky structures are also characterized; they include the spanwise gradient of the longitudinal fluctuating velocity and both streamwise and spanwise integral length scales. The POD analysis indicates that the turbulent kinetic energy of the streaky structures is reduced. When possible, our results are compared with those obtained by other control techniques such as a spanwise-wall oscillation, a spanwise oscillatory Lorentz force and a transverse traveling wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

Latin symbols :

A o :

Peak-to-peak oscillation amplitude at the actuator tip

\(A_{\omega _{x} } \) :

Size of streamwise vortex

D y z :

Velocity gradient tensor

f o :

Oscillation frequency

H c :

Height of vortex center

H 12 :

= δ /𝜃, Shape factor, where δ and 𝜃 are displacement and momentum thicknesses, respectively

L c :

Transverse spacing of adjacent vortex centers

N c :

Number of vortex center

Re 𝜃 :

= U 𝜃/ν, Reynolds number based on momentum thickness

Re τ :

= u τ δ/ν, Reynolds number based on friction velocity

S :

Spacing of adjacent streaks

U, U :

Local mean and free-stream streamwise velocities, respectively

u :

Streamwise fluctuating velocity

u τ :

\(= \sqrt {\overline \tau _{w} /\rho } ,\) friction velocity

W :

Streak width

W p :

Perturbed spanwise velocity

w :

Spanwise fluctuating velocity

x :

Streamwise direction

y :

Wall-normal direction

z :

Spanwise direction

δ 99 :

Boundary layer thickness defined by the location where U = 99% U

𝜃 :

Momentum thickness

Λ c i :

= (ω x / |ω x |)λ c i , signed swirling strength

λ r :

Real eigenvalue

λ c i :

Vortex strength as indicated by eigenvalue of the local velocity gradient tensor

λ z :

Wavelength

v :

Wall-normal fluctuating velocity

ρ :

Flow density

\(\overline \tau _{w} \) :

Averaged wall shear stress

ϕ i, i+1 :

(i = 1, 2, …, 15), phase shift between adjacent actuator

ω x :

Streamwise vorticity

ω y :

Wall-normal vorticity

PIV:

Particle image velocimetry

POD:

Proper orthogonal decomposition

TBL:

Turbulent boundary layer

TKE:

Turbulent kinetic energy

+:

Normalization by wall units

−:

Ensemble average

References

  1. Kline, S.J., Reynolds, W.C., Schraub, F.A., Runstadler, P.W.: The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773 (1967)

    Article  Google Scholar 

  2. Robinson, S.K.: Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601–39 (1991)

    Article  Google Scholar 

  3. Schoppa, W., Hussain, F.: Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57–108 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jiménez, J.: Near-wall turbulence. Phys. Fluids 25, 101302 (2013)

    Article  Google Scholar 

  5. Panton, R. (ed.): Self-Sustaining Mechanisms of Wall Turbulence. Comp. Mech. Publ, Southampton, UK (1997)

    MATH  Google Scholar 

  6. Wallace, J.M.: Highlights of from 50 years of turbulent boundary layer research. J. Turbul. 13(53), 1–70 (2013)

    Google Scholar 

  7. Kravchenko, A.G., Choi, H., Moin, P.: On the generation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys. Fluids A 5, 3307–9 (1993)

    Article  Google Scholar 

  8. Orlandi, P., Jiménez, J.: On the generation of turbulent wall friction. Phys. Fluids A 6, 634–41 (1994)

    Article  Google Scholar 

  9. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  10. Kim, J.: On the structure of wall-bounded turbulent flows. Phys. Fluids 26(8), 2088–97 (1983)

    Article  MATH  Google Scholar 

  11. Kim, J.: Physics and control of wall turbulence for drag reduction. Phil. Trans. R. Soc. A 369, 1396–1411 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jeong, J., Hussain, F., Schoppa, W., Kim, J.: Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185–214 (1997)

    Article  MATH  Google Scholar 

  13. Lu, S.S., Willmarth, W.W.: Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60, 481–511 (1973)

    Article  Google Scholar 

  14. Smith, C.R., Walker, J.D.A.: Turbulent Wall-Layer Vortices in Fluid Vortices. Springer, New York (1994)

    Google Scholar 

  15. Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms of generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamilton, J.M., Kim, J., Waleffe, F.: Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317–348 (1995)

    Article  MATH  Google Scholar 

  17. Gad-el-Hak, M.: Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press (2000)

  18. Karniadakis, G.E., Choi, K.-S.: Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 45–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, J.: Control of turbulent boundary layers. Phys. Fluids A 15, 1093–1105 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Quadrio, M.: Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. A 369, 1428–1442 (2011)

    Article  Google Scholar 

  21. Bai, H.L., Zhou, Y., Zhang, W.G., Xu, S., Wang, Y., Antonia, R.A.: Active control of a turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750, 316–354 (2014)

    Article  Google Scholar 

  22. Berger, T.W., Kim, J., Lee, C., Lim, J.: Turbulent boundary layer control utilizing the Lorentz force. Phys. Fluids 12, 631–49 (2000)

    Article  MATH  Google Scholar 

  23. Huang, L., Fan, B., Dong, G.: Turbulent drag reduction via a transverse wave travelling along streamwise direction induced by Lorentz force. Phys. Fluids 22, 015103 (2010)

    Article  MATH  Google Scholar 

  24. Nakanishi, R., Mamori, H., Fukagata, K.: Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Int. J. Heat Fluid Flow 35, 152–159 (2012)

    Article  Google Scholar 

  25. Tomiyama, N., Fukagata, K.: Direct numerical simulation of drag reduction in a turbulent channel flow using spanwise travelling wave-like wall deformation. Phys. Fluids 25, 105115 (2013)

    Article  Google Scholar 

  26. Koh, S.R., Meysonnat, P., Meinke, M., Schröder, W.: Drag reduction via spanwise transversal surface waves at high Reynolds numbers. Flow Turb. Combust. 95, 169–190 (2015)

    Article  Google Scholar 

  27. Koh, S.R., Meysonnat, P., Statnikov, V., Meinke, M., Schröder, W.: Dependence of turbulent wall-shear stress on the amplitude of spanwise transversal surface waves. Comp. Fluids 119, 261–275 (2015)

    Article  MathSciNet  Google Scholar 

  28. Meysonnat, P.S., Roggenkamp, D., Li, W., Roidl, B., Schröder, W.: Experimental and numerical investigation of transversal traveling surface waves for drag reduction. Euro. J. Mech. B/Fluids 55, 313–323 (2016)

    Article  MathSciNet  Google Scholar 

  29. Mamori, H., Fukagata, K.: Drag reduction effect by a wave-like wall-normal body force in a turbulent channel flow. Phys. Fluids 26, 115104 (2014)

    Article  Google Scholar 

  30. Kang, S., Choi, H.: Active wall motions for skin-friction drag reduction. Phys. Fluids 12(12), 3301–04 (2000)

    Article  MATH  Google Scholar 

  31. Choi, K.-S., DeBisschop, J.-R., Clayton, B.R.: Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J. 36(7), 1157–63 (1998)

    Article  Google Scholar 

  32. Dhanak, M.R., Si, C.: On reduction of turbulent wall friction through spanwise wall oscillations. J. Fluid Mech. 383, 175–195 (1999)

    Article  MATH  Google Scholar 

  33. Iuso, G., Di Cicca, G.M., Onorato, M., Spazzini, P.G., Malvano, R.: Velocity streak structure modifications induced by flow manipulation. Phys. Fluids 15, 2602 (2003)

    Article  MATH  Google Scholar 

  34. Du, Y., Karniadakis, G.E.: Suppressing wall turbulence by means of a transverse travelling wave. Science 288, 1230–34 (2000)

    Article  Google Scholar 

  35. Du, Y., Symeonidis, V., Karniadakis, G.E.: Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech. 457, 1–34 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Khoo, B.C., Chew, Y.T., Teo, C.J.: On near-wall hot-wire measurements. Exps. Fluids 29, 448–460 (2000)

    Article  Google Scholar 

  37. Huang, J.F., Zhou, Y., Zhou, T.M.: Three-dimensional wake structure measurement using a modified PIV technique. Exps. Fluids 40, 884–896 (2006)

    Article  Google Scholar 

  38. Sciacchitano, A., Wieneke, B.: PIV Uncertainty propagation. Meas. Sci. Technol. 27, 084006 (2016)

    Article  Google Scholar 

  39. Hu, J.C., Zhou, Y.: Flow structure behind two staggered circular cylinders. Part 1. Downstream evolution and classification. J. Fluid Mech. 607, 51–80 (2006)

    MATH  Google Scholar 

  40. Sciacchitano, A., Neal, D.R., Smith, B.L., Warner, S.O., VIachos, P.P., Wieneke, B., Scarano, F.: Collaborative framework for PIV uncertainty quantification: comparative assessment of methods. Meas. Sci. Technol. 26, 074004 (2015)

    Article  Google Scholar 

  41. Chong, M., Perry, A. E., Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765 (1990)

    Article  MathSciNet  Google Scholar 

  42. Gouder, K., Potter, M., Morrison, J.F.: Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces. Exp Fluids 54, 1441 (2013)

    Article  Google Scholar 

  43. Touber, E., Leschziner, A.: Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150–200 (2012)

    Article  MATH  Google Scholar 

  44. Di Cicca, G.M., Iuso, G., Spazzini, P.G., Onorato, M.: Particle image velocimetry investigation of a turbulent boundary layer manipulated by spanwise wall oscillations. J. Fluid Mech. 467, 41–56 (2002)

    Article  MATH  Google Scholar 

  45. Ricco, P.: Modification of near-wall turbulence due to spanwise wall oscillations. J. Turbul. 5, N24 (2004)

    Article  Google Scholar 

  46. Yang, L.: Turbulent Drag Reduction with Piezo-Ceramic Actuator Array. Master Degree Thesis, The Hong Kong Polytechnic University (2013)

  47. Qiao, Z.X., Zhou, Y., Wu, Z.: Turbulent boundary layer under the control of different schemes. Proc. R. Soc. A 473, 20170038 (2017)

    Article  MathSciNet  Google Scholar 

  48. Ricco, P., Wu, S.: On the effects of lateral wall oscillations on a turbulent boundary layer. Exp. Therm. Fluid Sci. 29(1), 41–52 (2004)

    Article  Google Scholar 

  49. Lardeau, S., Leschziner, M.A.: The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25, 075109 (2013)

    Article  Google Scholar 

  50. Choi, K.-S.: Near-wall structure of turbulent boundary layer with riblets. J. Fluid Mech. 208, 417–458 (1989)

    Article  Google Scholar 

  51. Antonia, R.A., Fulachier, L., Krishnamoorthy, L.V., Benabid, T., Anselmet, F.: Influence of wall suction on the organized motion in a turbulent boundary layer. J. Fluid Mech. 190, 217–240 (1988)

    Article  Google Scholar 

  52. Lumley, J.L.: Stochastic Tools in Turbulence. Academic Press, London (1970)

    MATH  Google Scholar 

  53. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  54. Sirovich, L.: Turbulence and the dynamics of coherent structures, part I. Quart. Appl. Math. 45, 561–590 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  55. Fiedler, H.E., Gad-el-Hak, M., Pollard, A., Bonnet, J.-P.: Control of free turbulent shear flows. In: Flow Control: Fundamental and Practices, Lecture Notes. Phys. 53, pp 336–429. Springer, Berlin (1998)

  56. Antonia, R.A., Zhu, Y., Sokolov, M.: Effect of concentrated wall suction on a turbulent boundary layer. Phys. Fluids 7, 2465–2474 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

YZ wishes to acknowledge support given to him from NSFC through grant 11632006, from RGC of HKSAR through grant PolyU 5329/11E. H.L.B. would like to acknowledge support given to him from NSFC through grant 11302062 and from State Key Laboratory of Aerodynamics through grant SKLA20130102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, H.L., Zhou, Y., Zhang, W.G. et al. Streamwise Vortices and Velocity Streaks in a Locally Drag-Reduced Turbulent Boundary Layer. Flow Turbulence Combust 100, 391–416 (2018). https://doi.org/10.1007/s10494-017-9860-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9860-8

Keywords

Navigation