Skip to main content
Log in

Drag Reduction Via Spanwise Transversal Surface Waves at High Reynolds Numbers

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The impact of transversal spanwise traveling surface waves on the wall-shear stress distribution of high Reynolds number turbulent boundary layer flows is analyzed using high-resolution large-eddy simulations. The Reynolds numbers based on the friction velocity are R e t = 540, 906, 1908, and 2250. The surface wave motion defined by the amplitude, the wavelength, and the phase speed in inner coordinates is constant for the investigated R e t range. When the Reynolds number is increased, the drag reduction decreases from 11 % to 1 %. That is, in contrast to the result in the literature for actuated channel flow, which shows the drag reduction (DR) as a function of the Reynolds number based on the friction velocity to be proportional to \(Re_{\tau }^{-0.2}\) for R e t = 1000, the current analysis for evolving turbulent boundary layers over actuated surfaces leads to DR\(\sim Re_{\tau }^{-1}\). The detailed analysis of the velocity profiles in the viscous sublayer clearly shows that the major difference in the velocity gradient occurs above the trough where the velocity gradient is reduced by increasing Reynolds number. At low Reynolds numbers, the peak value of the wall-normal vorticity distribution above the moving wave crest and above the moving wave trough is much smaller than that of the non-actuated wall resulting in a pronounced drag reduction. At increasing Reynolds number, the difference in the wall-normal vorticity distribution in the near-wall region for the actuated and the non-actuated wall becomes smaller leading to a lower drag reduction. The analysis of the anisotropy map shows that the wall actuation excites the two-component turbulence in the viscous sublayer above the crest and the trough. That is, unlike passively controlled flow, the drag reducing mechanism is related not to the one-component but to the two-component state in the anisotropy map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karniadakis, G., Choi, K.S.: Ann. Rev. Fluid Mech. 35(1), 45 (2003) http://www.annualreviews.org/doi/abs/10.1146/annurev.fluid.35.101101.161213

    Article  MathSciNet  Google Scholar 

  2. Quadrio, M.: Phil. Trans. R. Soc. A 369(1940), 1428 (2011) http: //rsta.royalsocietypublishing.org/content/369/1940/1428.short

    Article  Google Scholar 

  3. Jung, W., Mangiavacchi, N., Akhavan, R.: Phys. Fluids 4(8), 1605 (1992) http://scitation.aip.org/content/aip/journal/pofa/4/8/10.1063/1.858381

    Article  Google Scholar 

  4. Akhavan, R., Jung, W., Mangiavacchi, N.: Advances in turbulence IV, pp 299–303. Springer (1993). http://link.springer.com/chapter/10.1007/978-94-011-1689-3_48

  5. Quadrio, M., Ricco, P.: J. Fluid Mech. 521, 251 (2004) http://journals.cambridge.org/abstract_S0022112004001855

    Article  MATH  Google Scholar 

  6. Touber, E., Leschziner, M.A.: J. Fluid Mech. 693, 150 (2012) http://journals.cambridge.org/abstract_S0022112011005076

    Article  MATH  Google Scholar 

  7. Agostini, L., Touber, E., Leschziner, M.: J. Fluid Mech. 743, 606 (2014) http://journals.cambridge.org/abstract_S0022112014000408

    Article  Google Scholar 

  8. Du, Y., Symeonidis, V., Karniadakis, G.: J. Fluid Mech. 457, 1 (2002) http://journals.cambridge.org/abstract_S0022112001007613

    Article  MATH  MathSciNet  Google Scholar 

  9. Zhao, H., Wu, J.Z., Luo, J.S.: Fluid Dyn. Res. 34(3), 175 (2004) http://www.sciencedirect.com/science/article/pii/S0169598303001412

    Article  MATH  Google Scholar 

  10. Itoh, M., Tamano, S., Yokota, K., Taniguchi, S.: J. Turbul. 7 (2006). http://www.tandfonline.com/doi/abs/10.1080/14685240600647064

  11. Tamano, S., Itoh, M.: J. Turbul. 13 (2012) http://www.tandfonline.com/doi/abs/10.1080/14685248.2012.655743

  12. Bai, H., Zhou, Y., Zhang, W., Xu, S., Wang, Y., Antonia, R.: J. Fluid Mech. 750, 316 (2014) http://journals.cambridge.org/article_S0022112014002614

    Article  Google Scholar 

  13. Klumpp, S., Meinke, M., Schröder, W.: J. Turbul. 11 (2010) http://www.tandfonline.com/doi/abs/10.1080/14685248.2010.494606

  14. Klumpp, S., Meinke, M., Schröder, W.: Flow Turbul. Combust. 87(1), 33 (2011) http://link.springer.com/article/10.1007/s10494-011-9326-3

    Article  MATH  Google Scholar 

  15. Boris, J., Grinstein, F., Oran, E., Kolbe, R.: Fluid Dyn. Res. 10(4–6), 199 (1992) http://iopscience.iop.org/1873-7005/10/4-6/A01

    Article  Google Scholar 

  16. Meinke, M., Schröder, W., Krause, E., Rister, T.: Comput. Fluids 31 (4), 695 (2002) http://www.sciencedirect.com/science/article/pii/S0045793001000731

    Article  MATH  Google Scholar 

  17. Alkishriwi, N., Meinke, M., Schröder, W. Comput. Fluids 35(10), 1126 (2006) http://www.sciencedirect.com/science/article/pii/S0045793005000848

    Article  MATH  Google Scholar 

  18. Renze, P., Meinke, M., Schröder, W.: Conference on Turbulence and Interactions TI2006, Porquerolles, France (2006)

  19. Rütten, F., Schröder, W., Meinke, M.: Phys. Fluids 17(3), 035107 (2005) http://scitation.aip.org/content/aip/journal/pof2/17/3/10.1063/1.1852573

    Article  Google Scholar 

  20. Klumpp, S., Meinke, M., Schröder, W.: Flow, Turbul. Combust. 85(1), 57 (2010) http://link.springer.com/article/10.1007/s10494-010-9251-x

    Article  MATH  Google Scholar 

  21. Renze, P., Schröder, W., Meinke, M.: Int. J. Heat Fluid Flow 29(1), 18 (2008) http://www.sciencedirect.com/science/article/pii/S0142727X07001129

    Article  Google Scholar 

  22. Roidl, B., Meinke, M., Schröder, W.: Int. J. Heat Fluid Flow 44, 28 (2013) http://www.sciencedirect.com/science/article/pii/S0142727X13000787

    Article  Google Scholar 

  23. Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: Int. J. Heat Fluid Flow 27(4), 585 (2006) http://www.sciencedirect.com/science/article/pii/ S0142727X06000282

    Article  Google Scholar 

  24. Fares, E., Schröder, W.: Flow, Turbul. Combust. 73(3–4), 187 (2005) http://link.springer.com/article/10.1007/s10494-005-8625-y

    Article  Google Scholar 

  25. Roidl, B., Meinke, M., Schröder, W.: Int. J. Heat Fluid Flow 45, 1 (2014) http://www.sciencedirect.com/science/article/pii/S0142727X13002154

    Article  Google Scholar 

  26. Koh, S.R., Meinke, M., Schröder, W.: AIAA Paper 2012-2183, 18th AIAA/CEAS Aeroacoustics Conference, 4–6 June 2012, Colorado Springs (2012)

  27. Lumley, J.L., Newman, G.R.: J. Fluid Mech. 82, 161 (1977) http://journals.cambridge.org/abstract_S0022112004001855

    Article  MATH  MathSciNet  Google Scholar 

  28. Frohnapfel, B., Lammers, P., Jovanovic, J., Durst, F.: J. Fluid Mech. 577, 457 (2007) http://journals.cambridge.org/abstract_S0022112004001855

    Article  MATH  Google Scholar 

  29. Fernholz, H.H., Finley, P.J.: Prog. Aerosp. Sci. 32(4), 245 (1996) http://www.sciencedirect.com/science/article/pii/0376042195000070

    Article  Google Scholar 

  30. Choi, K.S., Xu, C.X., Sung, H.J.: AIAA J. 40(5), 842 (2002) http://arc.aiaa.org/doi/pdf/10.2514/2.1750

    Article  Google Scholar 

  31. Roggenkamp, D., Jessen, W., Li, W., Klaas, M., Schröder, W.: (2014). Manuscript submitted for publication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Ryong Koh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, S., Meysonnat, P., Meinke, M. et al. Drag Reduction Via Spanwise Transversal Surface Waves at High Reynolds Numbers. Flow Turbulence Combust 95, 169–190 (2015). https://doi.org/10.1007/s10494-015-9614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9614-4

Keywords

Navigation