Skip to main content
Log in

Near-Wall Flow Statistics in High-\(Re_{\tau }\) Drag-Reduced Turbulent Boundary Layers

  • Research
  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Manipulating the organized flow in the near-wall region of a turbulent boundary layer is a direct path to achieving skin-friction drag reduction. However, near-wall flow measurements in high Reynolds number (\(Re_{\tau }\)) wall flows can be challenging, due to this region’s small physical size and measurement resolution issues. The present study demonstrates the capability of hot-wire (HW) and stereoscopic particle image velocimetry (PIV) techniques of accurately estimating the trends of near-wall flow statistics in high-\(Re_{\tau }\) drag-reduced turbulent boundary layers. The drag reduction strategy considered involves imposition of streamwise travelling waves of spanwise wall oscillations, well known for attenuating the drag-producing near-wall streaks via unsteady cross-flow straining. A flow phase identification methodology is proposed, based on real-time tracking of the wall-oscillation cycle, to estimate the near-wall phase-based statistics from PIV experiments. This methodology is leveraged to investigate phase-specific orientations of the near-wall flow features, which have been shown in the literature to mimic the characteristics of the shear strain vector, dictating the efficacy of this drag reduction scheme. Reconciliation of the HW and PIV measurements demonstrates that the trends exhibited by higher-order moments of the near-wall streamwise velocity fluctuations, with increasing drag reduction, are representative of the inherent flow physics of the drag-reduced flow. Apart from assisting with the design of high-\(Re_{\tau }\) experiments over drag-reducing devices (riblets, plasma actuators, etc.), the present outcomes also inform high-\(Re_{\tau }\) studies in more general three-dimensional wall flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility

Data can be made available upon reasonable request.

References

  • Abdel-Rahman, A.A.: On the yaw-angle characteristics of hot-wire anemometers. Flow Meas. Instrum. 6(4), 271–278 (1995)

    Article  Google Scholar 

  • Abe, H.: Direct numerical simulation of a non-equilibrium three-dimensional turbulent boundary layer over a flat plate. J. Fluid Mech. 902, A20 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Agostini, L., Leschziner, M.: The impact of footprints of large-scale outer structures on the near-wall layer in the presence of drag-reducing spanwise wall motion. Flow Turbul. Combust. 100, 1037–1061 (2018)

    Article  Google Scholar 

  • Agostini, L., Leschziner, M.: The connection between the spectrum of turbulent scales and the skin-friction statistics in channel flow at \({R}e_{\tau }\)\(\approx\) 1000. J. Fluid Mech. 871, 22–51 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Agostini, L., Touber, E., Leschziner, M.: The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion. Int. J. Heat Fluid Flow 51, 3–15 (2015)

    Article  Google Scholar 

  • Akhavan, R., Jung, W., Mangiavacchi, N.: Control of wall turbulence by high frequency spanwise oscillations. AIAA Paper 93, 3282 (1993)

    Google Scholar 

  • Astarita, T.: Analysis of weighting windows for image deformation methods in PIV. Exp. Fluids 43, 859–872 (2007)

    Article  Google Scholar 

  • Baron, A., Quadrio, M.: Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55, 311–326 (1995)

    Article  MATH  Google Scholar 

  • Bruun, H.: Hot-Wire Anemometry Princ. Signal Anal. Oxford University Press (1995)

    Book  Google Scholar 

  • Cameron, S.M., Nikora, V.I., Albayrak, I., Miler, O., Stewart, M., Siniscalchi, F.: Interactions between aquatic plants and turbulent flow: a field study using stereoscopic PIV. J. Fluid Mech. 732, 345–372 (2013)

    Article  MATH  Google Scholar 

  • Champagne, F.H., Sleicher, C.A., Wehrmann, O.H.: Turbulence measurements with inclined hot-wires part 1. heat transfer experiments with inclined hot-wire. J. Fluid Mech. 28(1), 153–175 (1967)

    Article  Google Scholar 

  • Chandran, D., Zampiron, A., Rouhi, A., Fu, M.K., Wine, D., Holloway, B., Smits, A.J., Marusic, I.: Turbulent drag reduction by spanwise wall forcing Part 2. high-Reynolds-number experiments. J. Fluid Mech. 968, 7 (2023)

    Article  MathSciNet  Google Scholar 

  • Choi, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503–539 (1993)

    Article  MATH  Google Scholar 

  • Choi, K., DeBisschop, J., Clayton, B.: Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J. 36(7), 1157–1163 (1998)

    Article  Google Scholar 

  • Choi, K., Jukes, T., Whalley, R.: Turbulent boundary-layer control with plasma actuators. Phil. Trans. R Soc. A 369(1940), 1443–1458 (2011)

    Article  Google Scholar 

  • Corke, T.C., Thomas, F.O.: Active and passive turbulent boundary-layer drag reduction. AIAA J. 56(10), 3835–3847 (2018)

    Article  Google Scholar 

  • Deck, S., Renard, N., Laraufie, R., Weiss, P.: Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to 13650. J. Fluid Mech. 743, 202–248 (2014)

    Article  Google Scholar 

  • Deshpande, R., Chandran, D., Smits, A.J., Marusic, I.: On the relationship between manipulated inter-scale phase and energy-efficient turbulent drag reduction. J. Fluid Mech. 972, A12 (2023)

    Article  MathSciNet  Google Scholar 

  • Devenport, W., Lowe, K.: Equilibrium and non-equilibrium turbulent boundary layers. Progr. Aerosp. Sci. 131(100), 807 (2022)

    Google Scholar 

  • Dubief, Y., White, C., Terrapon, V., Shaqfeh, E., Moin, P., Lele, S.: On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 514, 271–280 (2004)

    Article  MATH  Google Scholar 

  • Duong, A., Corke, T., Thomas, F.: Characteristics of drag-reduced turbulent boundary layers with pulsed-direct-current plasma actuation. J. Fluid Mech. 915, A113 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Duvvuri, S., McKeon, B.J.: Triadic scale interactions in a turbulent boundary layer. J. Fluid Mech. 767, R4 (2015)

    Article  MATH  Google Scholar 

  • Ferrante, A., Elghobashi, S.: On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles. J. Fluid Mech. 503, 345–355 (2004)

    Article  MATH  Google Scholar 

  • Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–582 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Gatti, D., Stroh, A., Frohnapfel, B., Hasegawa, Y.: Predicting turbulent spectra in drag-reduced flows. Flow Turbul. Combus. 100(4), 1081–1099 (2018)

    Article  Google Scholar 

  • Gad-el Hak, M.: Flow Control Passiv. Act. React. Flow Manag. Cambridge University Press (2000)

    Book  Google Scholar 

  • Hamilton, J.M., Kim, J., Waleffe, F.: Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317–348 (1995)

    Article  MATH  Google Scholar 

  • Hutchins, N., Monty, J., Ganapathisubramani, B., Ng, H., Marusic, I.: Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 673, 255–285 (2011)

    Article  MATH  Google Scholar 

  • Hwang, J., Sung, H.: Influence of large-scale motions on the frictional drag in a turbulent boundary layer. J. Fluid Mech. 829, 751–779 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiménez, J.: Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiménez, J., Pinelli, A.: The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335–359 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, J.: Physics and control of wall turbulence for drag reduction. Phil. Trans. R Soc. A 369(1940), 1396–1411 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  • Kline, S.J., Reynolds, W.C., Schraub, F., Runstadler, P.: The structure of turbulent boundary layers. J. Fluid Mech. 30(4), 741–773 (1967)

    Article  MATH  Google Scholar 

  • Lozano-Durán, A., Giometto, M., Park, G., Moin, P.: Non-equilibrium three-dimensional boundary layers at moderate Reynolds numbers. J. Fluid Mech. 883, A20 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • di Mare, L., Jelly, T., Day, I.: Angular response of hot wire probes. Meas. Sci. Technol. 28(035), 303 (2017)

    Google Scholar 

  • Marusic, I., Mathis, R., Hutchins, N.: Predictive model for wall-bounded turbulent flow. Science 329(5988), 193–196 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Marusic, I., Chauhan, K., Kulandaivelu, V., Hutchins, N.: Evolution of zero-pressure-gradient boundary layers from different tripping conditions. J. Fluid Mech. 783, 379–411 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Marusic, I., Chandran, D., Rouhi, A., Fu, M.K., Wine, D., Holloway, B., Chung, D., Smits, A.J.: An energy-efficient pathway to turbulent drag reduction. Nat. Commun. 12(1), 1–8 (2021)

    Article  Google Scholar 

  • Mathis, R., Marusic, I., Chernyshenko, S.I., Hutchins, N.: Estimating wall-shear-stress fluctuations given an outer region input. J. Fluid Mech. 715, 163–180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Min, T., Kim, J.: Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16, 55–58 (2004)

    Article  MATH  Google Scholar 

  • Min, T., Yoo, J., Choi, H., Joseph, D.: Drag reduction by polymer additives in a turbulent channel flow. J. Fluid Mech. 486, 213–238 (2003)

    Article  MATH  Google Scholar 

  • Pal, S., Deutsch, S., Merkle, C.: A comparison of shear stress fluctuation statistics between microbubble modified and polymer modified turbulent boundary layers. Phys. Fluids A Fluid Dyn. 1(8), 1360–1362 (1989)

    Article  Google Scholar 

  • Perry, A.E.: Hot-wire anemometry. Oxford Science Publication (1982)

  • Quadrio, M., Ricco, P.: The laminar generalized Stokes layer and turbulent drag reduction. J. Fluid Mech. 667, 135–157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Quadrio, M., Sibilla, S.: Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424, 217–241 (2000)

    Article  MATH  Google Scholar 

  • Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Raffel, M., Willert, C., Scarano, F., Kähler, C., Wereley, S., Kompenhans, J.: Part. Image Velocim. A Pract. Guide. Springer (2018)

    Book  Google Scholar 

  • Ricco, P., Wu, S.: On the effects of lateral wall oscillations on a turbulent boundary layer. Exp. Thermal Fluid Sci. 29(1), 41–52 (2004)

    Article  Google Scholar 

  • Ricco, P., Skote, M., Leschziner, M.A.: A review of turbulent skin-friction drag reduction by near-wall transverse forcing. Prog. Aero Sci. 123(100), 713 (2021)

    Google Scholar 

  • Rouhi, A., Fu, M.K., Chandran, D., Zampiron, A., Smits, A.J., Marusic, I.: Turbulent drag reduction by spanwise wall forcing. part 1. large-eddy simulations. J. Fluid Mech. 968, A6 (2023)

    Article  MathSciNet  Google Scholar 

  • Schoppa, W., Hussain, F.: Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57–108 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Sillero, J.A., Jiménez, J., Moser, R.: Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to \({\delta }^{+}\)\(\approx\) 2000. Phys. Fluids 26(10), 105–109 (2014)

    Article  Google Scholar 

  • Smits, A., McKeon, B., Marusic, I.: High-Reynolds number wall turbulence. Ann. Rev. Fluid Mech. 43, 353–375 (2011)

    Article  MATH  Google Scholar 

  • Stokes, G.: On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Philos. Soc. 9, 8–106 (1851)

    Google Scholar 

  • Touber, E., Leschziner, M.: Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150–200 (2012)

    Article  MATH  Google Scholar 

  • Waleffe, F., Kim, J., Hamilton, J.M.: On the origin of streaks in turbulent shear flows. in Turbulent Shear Flows 8: Selected Papers from the Eighth International Symposium on Turbulent Shear Flows, Munich, Germany, pp. 37–49. Springer 1991 (1993)

  • Walsh, M.: Riblets as a viscous drag reduction technique. AIAA J. 21(4), 485–486 (1983)

    Article  Google Scholar 

  • Yao, J., Chen, X., Hussain, F.: Reynolds number effect on drag control via spanwise wall oscillation in turbulent channel flows. Phys. Fluids 31(8), 085–108 (2019)

    Article  Google Scholar 

Download references

Funding

This research was funded through the Deep Science Fund of Intellectual Ventures (IV) and the Discovery Project of the Australian Research Council (ARC). R. Deshpande also acknowledges financial support by the University of Melbourne through the Melbourne Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

R.D. led the preparation of the main manuscript with assistance from A.Z. and I.M.; D.C. and A.J.S. assisted with its reviewing and editing. I.M. and A.J.S. managed funding from ARC and IV and supervised the entire project.

Corresponding author

Correspondence to Rahul Deshpande.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshpande, R., Zampiron, A., Chandran, D. et al. Near-Wall Flow Statistics in High-\(Re_{\tau }\) Drag-Reduced Turbulent Boundary Layers. Flow Turbulence Combust (2023). https://doi.org/10.1007/s10494-023-00510-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10494-023-00510-6

Keywords

Navigation