Skip to main content
Log in

The Impact of Footprints of Large-Scale Outer Structures on the Near-Wall Layer in the Presence of Drag-Reducing Spanwise Wall Motion

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This study is motivated by the observation that the drag-reduction effectiveness achieved by the imposition of oscillatory spanwise wall motion declines with Reynolds number. The question thus posed is whether the decline is linked to the increasingly strong influence of large-scale outer structures in the log layer on the near-wall turbulence, in general, and the streak strength in the viscosity-affected layer, in particular – a process referred to as modulation. This question is addressed via an extensive statistical analysis of DNS data for a channel flow at a friction Reynolds number 1020, subjected to oscillatory spanwise wall motion at a nominal wall-scaled period of 100. The analysis rests on a separation of turbulent scales by means of the Empirical Mode Decomposition. This method is used to derive conditional statistics of small-scale motions and skin friction subject to prescribed intensity of large-scale motions – referred to as footprinting. It is shown that the large-scale fluctuations are responsible, directly on their own, for roughly 30% to the skin friction. Positive large-scale fluctuations are also shown to be the cause of a major amplification of small-scale streaks, relative to weak attenuation by negative fluctuations. This highly asymmetric process is likely to be indirectly influential on the drag-reduction process, although it is not possible to identify this indirect effect in quantitative terms as part of the present analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Agostini, L., Touber, E., Leschziner, M.A.: Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at. J. Fluid Mech. 743, 606–635 (2014)

    Article  Google Scholar 

  2. Agostini, L., Touber, E., Leschziner, M.: The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion. Int. J. Heat Fluid Flow 51, 3–15 (2015)

    Article  Google Scholar 

  3. Chung, Y.M., Hurst, E., Yang, Q. Zhou, Y., Lucey, A., Liu, Y., Huang, L. (eds.): DNS for turbulent drag reduction at R e τ = 1600. Springer, Berlin (2016)

  4. Gatti, D., Quadrio, M.: Performance losses of drag-reducing spanwise forcing at moderate values of the Reynolds number. Phys. Fluids 25(12), 125109 (2013)

    Article  Google Scholar 

  5. Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)

    Article  MATH  Google Scholar 

  6. Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Touber, E., Leschziner, M.A.: Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150–200 (2012)

    Article  MATH  Google Scholar 

  8. Viotti, C., Quadrio, M., Luchini, P.: Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction. Phys. fluids 21(11), 115109 (2009)

    Article  MATH  Google Scholar 

  9. Lardeau, S., Leschziner, M.A.: The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25(7), 075109 (2013)

    Article  Google Scholar 

  10. Ricco, P.: Modification of near-wall turbulence due to spanwise wall oscillations. J. Turbul. 5, 20–20 (2004)

    Article  Google Scholar 

  11. Skote, M.: Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity. Phys. Fluids 23(8), 081703 (2011)

    Article  Google Scholar 

  12. Skote, M.: Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Int. J. Heat Fluid Flow 38, 1–12 (2012)

    Article  Google Scholar 

  13. Skote, M.: Comparison between spatial and temporal wall oscillations in turbulent boundary layer flows. J. Fluid Mech. 730, 273–294 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yudhistira, I., Skote, M.: Direct numerical simulation of a turbulent boundary layer over an oscillating wall. J. Turbul. 12, N9 (2011)

  15. Hurst, E., Yang, Q., Chung, Y.M.: The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55 (2014)

    Article  Google Scholar 

  16. Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–582 (2016)

    Article  MathSciNet  Google Scholar 

  17. Luchini, P.: Reducing the turbulent skin friction. In: Desideri, J.-A., et al (eds.) Proc. 3rd ECCOMAS CFD conference on computational methods in applied sciences 1996, pp 466–470. Wiley (1996)

  18. Mathis, R., Hutchins, N., Marusic, I.: Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337 (2009)

    Article  MATH  Google Scholar 

  19. Hutchins, N., Monty, J.P., Ganapathisubramani, B., Ng, H.C.H., Marusic, I.: Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 673, 255–285 (2011)

    Article  MATH  Google Scholar 

  20. Hutchins, N., Nickels, T.B., Marusic, I., Chong, M.: Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103–136 (2009)

    Article  MATH  Google Scholar 

  21. Marusic, I., Mathis, R., Hutchins, N.: Predictive model for wall-bounded turbulent flow. Science 329(5988), 193–196 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mathis, R., Monty, J.P., Hutchins, N., Marusic, I.: Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Phys. Fluids 21(11), 111703 (2009)

    Article  MATH  Google Scholar 

  23. Agostini, L., Leschziner, M., Gaitonde, D.: Skewness-induced asymmetric modulation of small-scale turbulence by large-scale structures. Phys. Fluids 28(1), 015110 (2016)

    Article  Google Scholar 

  24. Bernardini, M., Pirozzoli, S.: Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids 23(6), 061701 (2011)

    Article  Google Scholar 

  25. Schlatter, P., Örlü, R.: Quantifying the interaction between large and small scales in wall-bounded turbulent flows: A note of caution. Phys. Fluids 22(5), 051704 (2010)

    Article  MATH  Google Scholar 

  26. Zhang, C., Chernyshenko, S.I.: Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence. Physical Review Fluids 1(1), 014401 (2016)

    Article  Google Scholar 

  27. Agostini, L., Leschziner, M.: On the validity of the quasi-steady-turbulence hypothesis in representing the effects of large scales on small scales in boundary layers. Phys. Fluids 28(4), 045102 (2016)

    Article  Google Scholar 

  28. Agostini, L., Leschziner, M.: Predicting the response of small-scale near-wall turbulence to large-scale outer motions. Phys. Fluids 28(1), 015107 (2016)

    Article  Google Scholar 

  29. de Giovanetti, M., Hwang, Y., Choi, H.: Skin-friction generation by attached eddies in turbulent channel flow. J. Fluid Mech. 808, 511–538 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Agostini, L., Leschziner, M.: On the influence of outer large-scale structures on near-wall turbulence in channel flow. Phys. Fluids 26(7), 075107 (2014)

    Article  Google Scholar 

  31. Blesbois, O., Chernyshenko, S.I., Touber, E., Leschziner, M.A.: Pattern prediction by linear analysis of turbulent flow with drag reduction by wall oscillation. J. Fluid Mech. 724, 607–641 (2013)

    Article  MATH  Google Scholar 

  32. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to R e τ = 590. Phys. Fluids 11(4), 943–945 (1999)

    Article  MATH  Google Scholar 

  33. Lozano-Durán, A., Jiménez, J.: Effect of the computational domain on direct simulations of turbulent channels up to R e τ = 4200. Phys. Fluids 26(1), 011702 (2014)

    Article  Google Scholar 

  34. Lee, M., Moser, R.D.: Direct numerical simulation of turbulent channel flow up to R e τ = 5200. J. Fluid Mech. 774, 395–415 (2015)

    Article  Google Scholar 

  35. Agostini, L., Leschziner, M.: Spectral analysis of near-wall turbulence in channel flow at R e τ = 4200 with emphasis on the attached-eddy hypothesis. Physical Review Fluids 2(1), 014603 (2017)

    Article  Google Scholar 

  36. Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to R e τ = 2003. Phys. Fluids 8(1), 011702 (2006)

    Article  Google Scholar 

  37. Jiménez, J.: Near-wall turbulence. Phys. Fluids 25(10), 101302 (2013)

    Article  Google Scholar 

  38. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Phys. Eng. Sci. 454(1971), 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Flandrin, P., Rilling, G., Goncalves, P.: Empirical mode decomposition as a filter bank. IEEE Signal Process Lett. 11(2), 112–114 (2004)

    Article  Google Scholar 

  40. Wu, Z., Huang, N.: A study of the characteristics of white noise using the empirical mode decomposition method. In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences. The Royal Society 460, 1597–1611 (2004)

    Article  Google Scholar 

  41. Townsend, A.A.: The structure of turbulent shear flow. Cambridge University press, Cambridge (1980)

    MATH  Google Scholar 

  42. Perry, A., Chong, M.: On the mechanism of wall turbulence. J. Fluid Mech. 119, 173–217 (1982)

    Article  MATH  Google Scholar 

  43. Davidson, P., Krogstad, P.A., Nickels, T., et al.: A refined interpretation of the logarithmic structure function law in wall layer turbulence. Phys. Fluids 18(6), 065112 (2006)

    Article  MATH  Google Scholar 

  44. Lozano-Durán, A., Jiménez, J.: Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432–471 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The research reported in this paper was undertaken within the framework of the EU-China project DRAGY, Grant Agreement 690623.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Agostini.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agostini, L., Leschziner, M. The Impact of Footprints of Large-Scale Outer Structures on the Near-Wall Layer in the Presence of Drag-Reducing Spanwise Wall Motion. Flow Turbulence Combust 100, 1037–1061 (2018). https://doi.org/10.1007/s10494-018-9917-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9917-3

Keywords

Navigation