Skip to main content
Log in

Friction Drag Variation via Spanwise Transversal Surface Waves

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The introduction of spanwise velocity is a promising technique to effect the near-wall turbulent flow field to influence friction drag. However, the essential physical mechanism which significantly reduces friction drag has not been understood, yet. It is the objective of this numerical study to improve the fundamental knowledge on the drag reduction mechanism. The investigation is based on spanwise traveling transversal surface waves which are applied to modify the near-wall flow field and to influence friction drag. Two actuation configurations are analyzed in detail. Compared with an unactuated flat plate boundary layer simulation the first wave setup, which represents a low frequency wave at an amplitude larger than the viscous sublayer, leads to a reduced wall-shear stress resulting in friction drag reduction of up to 9%. The second wave setup, which possesses a higher frequency and an amplitude in the range of the viscous sublayer, yields an increase of friction drag of about 8%. Unlike previous investigations which focus on excitation setups to lower friction drag, the comparison of the two wave setups in this study allows to identify the effects which on the one hand, lead to drag reduction and on the other hand, result in drag increase. That is, due to the pronounced differences the major effects determining the friction distribution are more evident. The two key features for drag reduction are the damping of the wall-normal vorticity fluctuations above the entire surface and the decrease of turbulence production. Furthermore, the effect of rearranging streamwise vorticity, which has been stated to be responsible for drag reduction, is found to occur at increasing and decreasing drag, i.e., it is not the effect that lowers the friction drag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACARE—Advisory Councilfor Aeronautic Research in Europe: European Aeronautics: A Vision for 2020. European Commission (2001)

  2. Akhavan, R., Jung, W., Mangiavacchi, N.: Turbulence control in wall-bounded flows by spanwise oscillations. Appl. Sci. Res. 51(1–2), 299–303 (1993)

    Article  Google Scholar 

  3. Alkishriwi, N., Meinke, M., Schröder, W.: A large-eddy simulation method for low mach number flows using preconditioning and multigrid. Comput. Fluids 35(10), 1126–1136 (2006)

    Article  MATH  Google Scholar 

  4. Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large-eddy simulation. Fluid Dyn. Res. 10, 199–228 (1992)

    Article  Google Scholar 

  5. Choi, H., Moin, P., Kim, J.: Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75–110 (1994)

    Article  MATH  Google Scholar 

  6. Du, Y., Symeonidis, V., Karniadakis, G.E.: Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech. 457, 1–34 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. El-Askary, W., Schröder, W., Meinke, M.: LES of Compressible Wall-Bounded Flows. Tech. Rep. 2003-3554, AIAA (2003)

  8. Große, S., Schröder, W.: Wall-shear stress patterns of coherent structures in turbulent duct flow. J. Fluid Mech. 633, 147–158 (2009)

    Article  MATH  Google Scholar 

  9. Guo, X., Meinke, M., Schröder, W.: Large-eddy simulation of film cooling flows. Comput. Fluids 35, 587–606 (2006)

    Article  MATH  Google Scholar 

  10. Hanjalić, K.: Second-moment turbulent closures for CFD: needs and prospects. Int. J. Comput. Fluid Dyn. 12, 67–97 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hanjalić, K., Kenjeres, S.: T-RANS simulation of deterministic eddy structure in flows driven by thermal buoyancy and Lorentz force. Flow Turbul. Combust. 66, 427–451 (2001)

    Article  MATH  Google Scholar 

  12. Itoh, M., Tamano, S., Yokota, K., Taniguchi, S.: Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion. J. Turbul. 7, 1–17 (2006)

    Article  MathSciNet  Google Scholar 

  13. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiménez, J., Pinelli, A.: The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335–359 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jung, W.J., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids 4, 1605–1607 (1992)

    Article  Google Scholar 

  16. Karniadakis, G.E., Choi, K.S.: Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 45–62 (2003)

    Article  MathSciNet  Google Scholar 

  17. Klumpp, S., Meinke, M., W.Schröder: Drag reduction by spanwise transversal surface waves. J. Turbul. 11(11), 1–13 (2010)

    Google Scholar 

  18. Klumpp, S., Meinke, M., W.Schröder: Numerical simulation of riblet-controlled spatial transition in a zero-pressure-gradient boundary layer. Flow Turbul. Combust. 85, 57–71 (2010)

    Article  MATH  Google Scholar 

  19. Le, A.T., Coleman, G.N., Kim, J.: Near-wall turbulence in three-dimensional boundary layers. Int. J. Heat Fluid Flow 21, 480–488 (2000)

    Article  Google Scholar 

  20. Lee, C., Kim, J.: Control of the viscous sublayer for drag reduction. Phys. Fluids 14, 2523–2529 (2002)

    Article  Google Scholar 

  21. Lee, C., Kim, J., Choi, H.: Suboptimal control of turbulent channel flow for drag reduction. J. Fluid Mech. 358, 245–258 (1998)

    Article  MATH  Google Scholar 

  22. Liou, M.S., Steffen Jr., C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233 – 258 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparision of second- and sixth-order methods for large-eddy simulations. Comput. Fluids 31, 695 – 718 (2002)

    Article  MATH  Google Scholar 

  25. Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)

  26. Renze, P., Schröder, W., Meinke, M.: Large-eddy simulation of film cooling at density gradients. Int. J. Heat Fluid Flow 29, 18–34 (2008)

    Article  Google Scholar 

  27. Renze, P., Schröder, W., Meinke, M.: LES of turbulent mixing in film cooling flows. Flow Turbul. Combust. 80, 119–132 (2008)

    Article  MATH  Google Scholar 

  28. Rütten, F., Meinke, M., Schröder, W.: Large-eddy simulations of frequency oscillation of the dean vorticies in turbulent pipe bend flows. Phys. Fluids 17, 035107-1–035107-11 (2005)

    Article  Google Scholar 

  29. Schoppa, W., Hussain, F.: A large-scale control strategy for drag reduction in turbulent boundary layers. Phys. Fluids 10, 1049–1051 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Spalart, P.R.: Direct simulation of a turbulent boundary layer up to R θ  = 1410. J. Fluid Mech. 187, 61–98 (1988)

    Article  MATH  Google Scholar 

  31. Zhao, H., Wu, J.Z., Luo, J.S.: Turbulent drag reduction by traveling wave of flexible wall. Fluid Dyn. Res. 34, 175–198 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Klumpp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klumpp, S., Meinke, M. & Schröder, W. Friction Drag Variation via Spanwise Transversal Surface Waves. Flow Turbulence Combust 87, 33–53 (2011). https://doi.org/10.1007/s10494-011-9326-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9326-3

Keywords

Navigation