Skip to main content
Log in

Numerical Simulation of Riblet Controlled Spatial Transition in a Zero-Pressure-Gradient Boundary Layer

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

To analyze the fundamental physical mechanism which determines the damping effect of a riblet surface on three-dimensional transition several numerical simulations of spatial transition in a flat plate zero-pressure-gradient boundary layer above a riblet wall are performed in this study. Two types of forced transition scenarios are investigated. The first type of transition is defined by K-type transition induced by a dominant two-dimensional Tollmien–Schlichting (TS) wave and a weak spanwise disturbance. The second type of transition is purely excited by two oblique waves. By a qualitative analysis of the occurring maximum wall-normal and spanwise velocity components and the Fourier modes of the disturbances the two-dimensional TS waves are found to be amplified by riblets, whereas three-dimensional structures, i.e., Λ-, hairpin, and streamwisely aligned vortices, are damped. At oblique transition the breakdown to turbulence is delayed by the riblets compared to transition on a clean surface. The investigation of the near wall flow structure reveals secondary flows induced by the riblets and reduced wall normal ejections as well as a reduced downwash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkishriwi, N., Schröder, W., Meinke, M.: A Large-Eddy simulation method for low mach number flows using preconditioning and multigrid. Comput. Fluids 35(10), 1126–1136 (2006)

    Article  MATH  Google Scholar 

  2. Bechert, D.W., Bruse, M., Hage, W., van der Hoeven, J.G.T., Hoppe, G.: Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 59–87 (1997)

    Article  ADS  Google Scholar 

  3. Belov, I.A., Enutin, G.V., Litvinov, V.N.: Influence of a flat plate streamwise and spanwise ribbed surface on the laminar-turbulent transition. Uch. Zap. TsAGI 17(5), 107–111 (1990)

    Google Scholar 

  4. Berlin, S., Lundbladh, A., Henningson, D.: Spatial simulation of oblique transition in a boundary layer. Phys. Fluids 6, 1949–1951 (1994)

    Article  ADS  Google Scholar 

  5. Boris, J., Grinstein, F., Oran, E., Kolbe, R.: New insights into large eddy simulation. Fluid Dyn. Res. 10, 199–228 (1992)

    Article  ADS  Google Scholar 

  6. Chernorai, V., Kozlov, V., Loefdahl, L., Grek, G., Chun, H.: Effect of riblets on nonlinear disturbances in the boundary layer. Thermophys. Aeromech. 13(1), 67–74 (2006)

    Article  ADS  Google Scholar 

  7. Choi, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503–539 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Ducros, F., Comte, P., Lesieur, M.: Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech. 326, 1–36 (1996)

    Article  MATH  ADS  Google Scholar 

  9. Ehrenstein, U.: On the linear stability of channel flow over riblets. Phys. Fluids 8, 3194–3196 (1996)

    Article  MATH  ADS  Google Scholar 

  10. Grek, G.R., Kozlov, V., Titarenko, S.: An experimental study of the influence of riblets on transition. J. Fluid Mech. 315, 31–149 (1996)

    Article  ADS  Google Scholar 

  11. Hirt, G., Thome, M.: Rolling of functional metallic surface structures. CIRP Annals—Manufacturing Technology 57(1), 317–320 (2008)

    Article  Google Scholar 

  12. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Ladd, D.M., Rohr, J.J., Reidy, L.W., Hendricks, E.W.: The effect of riblets on laminar to turbulent transition. Exp. Fluids 14, 1–2 (1993)

    Article  ADS  Google Scholar 

  14. Liou, M.S., Steffen, Jr., C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Litvinenko, Y.A., Chernoray, V.G., Kozlov, V.V., Loefdahl, L., Grek, G.R., Chun, H.H.: The influence of riblets on the development of a Λ structure and its transformation into a turbulent spot. Physics - Doklady 51, 144–147 (2006)

    Article  ADS  Google Scholar 

  16. Luchini, P., Trombetta, G.: Effects of riblets upon flow stability. Appl. Sci. Res. 54, 313–321 (1995)

    Article  MATH  ADS  Google Scholar 

  17. Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second- and sixth-order methods for Large-Eddy simulations. Comput. Fluids 31, 695–718 (2002)

    Article  MATH  Google Scholar 

  18. Neuman, D., Dinkelacker, A.: Drag measurements on V-grooved surfaces on a body of revolution in axial flow. Appl. Sci. Res. 48(1), 105–114 (1991)

    Article  Google Scholar 

  19. Rai, M.M., Moin, P.: Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer. J. Comput. Phys. 109(2), 169–192 (1993)

    Article  MATH  ADS  Google Scholar 

  20. Renze, P., Schröder, W., Meinke, M.: LES of turbulent mixing in film cooling flows. Flow Turbul. Combust. 80, 119–132 (2008)

    Article  MATH  Google Scholar 

  21. Rütten, F., Schröder, W., Meinke, M.: LES of frequency oscillations of the dean vortices in turbulent pipe bend flow. Phys. Fluids 17(2), 035,107.1–035,107.11 (2005)

    Google Scholar 

  22. Schlatter, P., Stolz, S., Kleiser, L.: Computational simulation of transitional and turbulent shear flow. In: Progress in Turbulence, Proc. ITI Conference on Turbulence (2005)

  23. Schlichting, H., Gersten, K.: Grenzschicht-Theorie, 10th edn. Springer, Berlin(2006)

    Google Scholar 

  24. Schmid, P.J., Henningson, D.S.: Stability and transition in shear flows. Springer, New York (2001)

    MATH  Google Scholar 

  25. Spalart, P.R.: Direct simulation of a turbulent boundary layer up to R θ = 1410. J. Fluid Mech. 187, 61–98 (1988)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Klumpp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klumpp, S., Meinke, M. & Schröder, W. Numerical Simulation of Riblet Controlled Spatial Transition in a Zero-Pressure-Gradient Boundary Layer. Flow Turbulence Combust 85, 57–71 (2010). https://doi.org/10.1007/s10494-010-9251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9251-x

Keywords

Navigation