Skip to main content
Log in

A general one-equation turbulence model for free shear and wall-bounded flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The purpose of thiswork is to introduce a complete and general one-equation model capable of correctly predicting a wide class of fundamental turbulent flows like boundary layer, wake, jet, and vortical flows. The starting point is the mature and validated two-equation k−ω turbulence model of Wilcox. The newly derived one-equation model has several advantages and yields better predictions than the Spalart-Allmaras model for jet and vortical flows while retaining the same efficiency and quality of the results for near-wall turbulent flows without using a wall distance. The derivation and validation of the new model using findings computed by the Spalart-Allmaras and the k−ω models are presented and discussed for several free shear and wall-bounded flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldwin, B.S. and Lomax, H., Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper (1978) 78–257.

  2. Baldwin, B.S. and Barth, T.J., A one-equation turbulence transport model for high reynolds number wall-bounded flows. AIAA Paper (1991) 91-0610.

  3. Bardina, J.E., Huang, P.G. and Coakly, T.J., Turbulence modeling validation, testing and development. NASA Technical Memorandum (1997) 110446.

  4. Batchelor, G.K., Axial flow in trailing line vortices. J. Fluid Mech. 20 (1964) 645–658.

    ADS  MATH  MathSciNet  Google Scholar 

  5. Bradbury, J.S., The structure of a self-preserving turbulent plane jet. J. Fluid Mech. 23 (1965) 31–64.

    ADS  Google Scholar 

  6. Bradshaw, P., Ferriss, D.H. and Atwell, N.P., Calculation of boundary layer development using the turbulent energy equation. J. Fluid Mech. 23 (1976) 31–64.

    Google Scholar 

  7. Cook, P.H., McDonald, M.A. and Firmin, M.C.P., Aerofoil RAE 2822-Pressure distributions, and boundary layer and wake measurements. AGARD AR-138 (1979).

  8. Durbin, P., A Reynolds stress model for the near-wall turbulence. J. Fluid Mech. 249, pp. 465ff (1993).

    ADS  Google Scholar 

  9. Emmons, H.W., Shear Flow Turbulence. In: Proceedings of the 2nd U.S. Congress of Applied Mechanics, ASME (1954).

  10. Fage, A. and Falkner, V.M., Note on Experiments on the Temperature and Velocity in theWake of a Heated Cylidrical Obstacle. In: Proceedings Royal Society (London), ser. A, vol. 135 (1932) pp. 702–705.

    ADS  Google Scholar 

  11. Fares, E. and Schröder, W., A differential equation for approximate wall distance. Intern. J. Numer. Methods Fluids 39 (2002) 743–762.

    MATH  ADS  Google Scholar 

  12. Gersten, K. and Herwig, H., Strömungsmechanik. Grundlagen der Impuls-, Wärme und Stoffübertragung aus asymptotischer Sicht. Vieweg-Verlag, Braunschweig/Wiesbaden (1992).

    Google Scholar 

  13. Godin, P. and Zingg, D.W., High-lift aerodynamic computations with one- and two-equation turbulence models. AIAA J. 35(2) (1997) 238–243.

    Google Scholar 

  14. Govindarajiu, S.P. and Saffman, P.G., Flow in a turbulent trailing vortex. Phys. Fluids 14 (1971) 2074–2080.

    ADS  Google Scholar 

  15. Grasso, F., Pirozzoli, S. and Gatski, T.B., Analysis and simulation of a turbulent, compressible starting vortex. Phys. of Fluids 11 (1999) 356–367.

    ADS  MathSciNet  Google Scholar 

  16. Heskestad, G., Hot-wire measurements in a plane turbulent jet. J. Appl. Mech. 32(4) (1965) 721–734.

    Google Scholar 

  17. Hoffmann, E.R. and Joubert, P.N., Turbulent line vortices. J. of Fluid Mechanics 16 (1963) 395–411.

    ADS  Google Scholar 

  18. Jones, W.P. and Launder, B.E., The predicition of laminarization with a two-equation model of turbulence. Intern. J. Heat Mass Trans. 15 (1972) 301–314.

    Google Scholar 

  19. Kline, S.J., Morkovin, M.V., Sovran, G. and Cockrell, D.J., Computation of turblent boundary layers. 1968 AFOSR-IFP-Stanford Conference Proceedings, vol. I, Thermoscience Division, Stanford University, California (1969).

    Google Scholar 

  20. Launder, B.E., Reece, G.J. and Rodi, W., Progress in the development of a Reynolds-Stress Turbulence Closure. J. Fluid Mech. 68 (pt. 3) (1975) 537–566.

    ADS  MATH  Google Scholar 

  21. van Leer, B., Toward the ultimate conservative ddifference scheme V.A second-order J. Comput. Phys. 32 (1979) 101–136.

    ADS  Google Scholar 

  22. Liepmann, H.W. and Laufer, J., Investiations of free turbulent mixing. NACA TN, 1257 (1947).

  23. Liou, M.S., A Sequel to AUSM:AUSM +. J. Comput. Phys. 129 (1996) 164–382.

    Article  MathSciNet  Google Scholar 

  24. Ludwieg, H. and Tillmann, W., Untersuchungen über die Wandschubspannung in turbulenten Reibungsschichten. Ing.-Archiv 17 (1949) 288–299.

    MATH  Google Scholar 

  25. Mellor, G.L. and Herring, H.J., Two Methods of calculating turbulent boundary layer behavior based on numerical solution of the equation of motion. Proc. Conf. Turb. Boundary Layer Pred., Stanford (1968).

  26. Menter, F.R., Influence of freestream values on k−ω turbulence model predictions. AIAA J. 30(6) (1992) 1657–1659.

    Article  ADS  Google Scholar 

  27. Menter, F.R., Zonal two equation k−ω turbulence models for aerodynamic flows. AIAA Paper (1993) 93–2906.

  28. Menter, F.R., Eddy viscosity transport equations and their relation to the k−ε model. NASA-TM, 108854 (1994).

  29. Moir, I.R.M., Measurements on a two-dimensional aerofoil with high-lift devices. AGARD AR-303, 2 (1994) 58–59.

    Google Scholar 

  30. Morkovin, M.V. and Favre A. (Eds.). Effects of compressibility on turbulent flows. In: Méchanique de la Turbulence, Centre National de la Recherche Scientific, Paris (1962), pp. 367–380.

    Google Scholar 

  31. Musker, A.J., Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer. AIAA J. 17 (1979) 655–657.

    ADS  MATH  Google Scholar 

  32. Nagano, Y., Pei, C.Q. and Hattori, H., A new low-reynolds-number one-equation model of turbulence. Flow, Turbulence and Combust. 63 (1999) 135–151.

    Google Scholar 

  33. Nee, V.W. and Kovasznay, L.S.G., The calculation of the incompressible turbulent boundary layer by a simple theory. Phys. Fluids 12 (1968) 473ff.

    ADS  Google Scholar 

  34. Pantano, C. and Jacquin, L., Differential rotation effects within a turbulent batchelor vortex. In: Direct and Large-Eddy Simulation-IV Workshop Proceedings, Enschede, The Netherlands, 2001.

  35. Phillips, W.R.C., The turbulent trailing vortex during Roll-up. J. Fluid Mech. 105 (1981) 451–467.

    ADS  MATH  Google Scholar 

  36. Phillips, W.R.C. and Graham, J.A.H., Reynolds stress measurements in a turbulent trailing vortex. J. Fluid Mech. 147 (1984) 451–467.

    Google Scholar 

  37. Pope, S.B., An explanation of the turbulent round-jet/plane-jet anomaly. AIAA J. 16(3) (1978) 279–281.

    ADS  MathSciNet  Google Scholar 

  38. Prandtl, L., Über die ausgebildete Turbulenz. ZAMM 5 (1925) 136–139.

    MATH  Google Scholar 

  39. Prandtl, L., Über ein neues Formelsystem für die ausgebildete Turbulenz. Nachr. Akad. Wiss. Göttingen, Math. Phys. (1945) 6–19.

  40. Qin, J.H., Numerical Simulations of a Turbulent Axial Vortex. Ph.D. Thesis, Purdue University (1998).

  41. Rodi, W., A new method for analyzing how-wire signals in highly turbulent flows and its evaluation on round jets. Disa Information 17 (1975) 9–18.

    Google Scholar 

  42. Rogers, S.E., Menter, F., Durbin, P.A. and Mansour, N.M., A comparison of turbulence models in computing multi-element airfoil flows. AIAA Paper (1994) 94-0291.

  43. Rumsey, C.L. and Vasta, V.N., A comparison of the predictive capabilities of several turbulence models using upwind and central-difference computer codes. AIAA Paper (1993) 93-0192.

  44. Saffman, P.G., Structure of turbulent line vortices. Phys. Fluids 16(8) (1973) 1181–1188.

    Article  MATH  ADS  Google Scholar 

  45. Saffman, P.G.,Vortex Dynamics. Cambridge Monographs on Mech. and Appl. Math., Cambridge (1992).

  46. Sai, V.A. and Lutfy, F.M., Analysis of the Baldwin-Barth and Spalart-Allmaras one-equation turbulence models. AIAA J. 33(10) (1995) 1971–1974.

    MATH  Google Scholar 

  47. Samuel, A.E. and Joubert, P.N., Aboundary layer developing in an increasingly adverse pressure gradient. J. Fluid Mech. 66 (1974) 481–505.

    ADS  Google Scholar 

  48. Schlichting, H. and Gersten, K., Grenzschicht-Theorie. 9th ed. Springer-Verlag, Berlin/Heidelberg (1997).

    MATH  Google Scholar 

  49. Schubauer, G.B. and Klebanoff, P.S., Contributions on the mechanics of boundary layer transition. NASA-TN (1955) 3489, also NASA-TR (1956) 1289.

  50. Secundov, A.N., Application of the differential equation for turbulent viscosity to the analysis of plane nonself-similar flows. Akademiya Nauk, SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza (1971) 114–127.

  51. Shur, M., Strelets, M., Zaikov, L., Gulyaev, A.N., Kozlov, V. E. and Secundov, A.N., A comparative numerical testing of one- and two-equation turbulence models for flows with separation and reattachment. AIAA Paper (1995) 95-0863.

  52. Spalart, P.R. and Allmaras, S.R., A one-equation turbulence model for aerodynamic flows. AIAA Paper (1992) 92-0439.

  53. Spalart, P.R. and Shur, M., On the sensitization of turbulence models to rotation and curvature. Aerosp. Sci. Tech. (5) (1997) 297–302.

    Google Scholar 

  54. Spalart, P.R., Personal communication (2002).

  55. Spalding, D.B., A single formula for the “law of the wall.” ASME J. Appl. Mech. 28 (1961) 455–457.

    MATH  Google Scholar 

  56. Sreedhar, M. Ragab, S., Large eddy simulation of longitudinal stationary vortices. Phys. Fluids 6 (1994) 2501–2514.

    Article  ADS  MATH  Google Scholar 

  57. Townsend, A.A., The structure of turbulent shear flow. Cambridge University Press, 2nd ed., Cambridge, England (1976).

    MATH  Google Scholar 

  58. Van Driest, E.R., Turbulent boundary layer in compressible fluids. J. Aeronau. Sci. 18 (1951) 145–160.

    MATH  Google Scholar 

  59. Wang, Q., Massey, S.J. and Abdol-Hamid, K.S., Solving Navier-stokes equations with advanced turbulence models on three-dimensional unstructured grids. AIAA Paper (1999) 99-0156.

  60. Weygandt, J.H. and Mehta, R.D., Three-dimensional structure of straight and curved plane wakes. J. Fluid Mech. 282 (1995) 279.

    ADS  Google Scholar 

  61. Wilcox, D.C., Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26(11) (1988) 1299–1310.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. Wilcox, D.C., Turbulence Modeling for CFD. 2nd ed., DCW Industries (1998).

  63. Wygnanski, I., and Fiedler, H.E., Some Measurements in Self-Presering Jet. J. Fluid Mech. 38 (1969) 577–612.

    ADS  Google Scholar 

  64. Zeman, O., The presistence of trailing vortices: A modeling study. Phys. Fluids 7(1) (1995) 135–143.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fares, E., Schröder, W. A general one-equation turbulence model for free shear and wall-bounded flows. Flow Turbulence Combust 73, 187–215 (2005). https://doi.org/10.1007/s10494-005-8625-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-005-8625-y

Key words

Navigation