Skip to main content
Log in

Amblyseius swirskii in greenhouse production systems: a floricultural perspective

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The predatory mite Amblyseius swirskii Athias-Henriot is a biological control agent that has the potential to play an important role in pest management in many greenhouse crops. Most research on this predatory mite has focused on its use and efficacy in greenhouse vegetables. However, an increasing number of growers of greenhouse ornamental crops also want to adopt biological control as their primary pest management strategy and find that biological control programs developed for vegetables are not optimized for use on floricultural plants. This paper reviews the use of A. swirskii in greenhouse crops, where possible highlighting the specific challenges and characteristics of ornamentals. The effects of different factors within the production system are described from the insect/mite and plant level up to the production level, including growing practices and environmental conditions. Finally, the use of A. swirskii within an integrated pest management system is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adar E, Inbar M, Gal S, Doron N, Zhang Z-Q, Palevsky E (2012) Plant-feeding and non-plant feeding phytoseiids: differences in behavior and cheliceral morphology. Exp Appl Acarol 58:341–357

    Article  PubMed  Google Scholar 

  • Adar E, Inbar M, Gal S, Gan-Mor S, Palevsky E (2014) Pollen on-twine for food provisioning and oviposition of predatory mites in protected crops. Biocontrol 59:307–317

    Article  Google Scholar 

  • Arthurs S, McKenzie CL, Chen J, Dogramaci M, Brennan M, Houben K, Osborne L (2009) Evaluation of Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae) as biological control agents of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on pepper. Biol Control 49:91–96

    Article  Google Scholar 

  • Avery P, Kumar V, Xiao Y, Powell C, McKenzie C, Osborne L (2014) Selecting an ornamental pepper banker plant for Amblyseius swirskii in floriculture crops. Arthropod Plant Interact 8:49–56

    Article  Google Scholar 

  • Bakker FM, Sabelis MW (1989) How larvae of Thrips tabaci reduce the attack succes of phytoseiid predators. Entomol Exp Appl 50:47–51

    Article  Google Scholar 

  • Biobest (2014) Side-effects manual. http://www.biobest.be/neveneffecten/. Accessed 14 Jan 2014

  • Boulard T, Fatnassi H, Roy JC, Lagier J, Fargues J, Smits N, Rougier M, Jeannequin B (2004) Effect of greenhouse ventillation on humidity of inside air and in leaf boundary layer. Agric For Meteorol 125:225–239

    Article  Google Scholar 

  • Brødsgaard HF, Heinz KM, Van Driesche RG, Parella MP (2004) Biological control of thrips on ornamental crops. In: Heinz KM, Van Driesche RG, Parella MP (eds) Biocontrol in protected culture. Ball Publishing, Batavia, pp 253–264

    Google Scholar 

  • Buitenhuis R, Shipp JL, Scott-Dupree C (2010a) Dispersal of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on potted greenhouse chrysanthemum. Biol Control 52:110–114

    Article  Google Scholar 

  • Buitenhuis R, Shipp JL, Scott-Dupree C (2010b) Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Bull Entomol Res 100:167–173

    Article  CAS  PubMed  Google Scholar 

  • Buitenhuis R, Murphy G, Shipp L (2013) Aphis gossypii Glover, melon/cotton aphid, Aulacorthum solani (Kaltenbach), foxglove aphid, and other arthropod pests in greenhouse crops. In: Gillespie D, Mason P (eds) Biological Control Programmes in Canada 2001–2012. CABI, Wallingford, pp 98–107

    Google Scholar 

  • Buitenhuis R, Glemser E, Brommit A (2014a) Practical placement improves the performance of slow release sachets of Neoseiulus cucumeris. Biocontrol Sci Technol 24:1153–1166

    Article  Google Scholar 

  • Buitenhuis R, Shipp L, Scott-Dupree C, Brommit A, Lee W (2014b) Host plant effects on the behaviour and performance of Amblyseius swirskii (Acari: Phytoseiidae). Exp Appl Acarol 62:171–180

    Article  PubMed  Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2011) Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. Biocontrol 56:185–192

    Article  Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2012) Biological control-based IPM in sweet pepper greenhouses using Amblyseius swirskii (Acari: Phytoseiidae). Biocontrol Sci Technol 22:1398–1416

    Article  Google Scholar 

  • Cédola CV, Sánchez NE, Liljesthröm GG (2002) Effect of tomato leaf hairiness on functional and numerical response of Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 25:819–831

    Article  Google Scholar 

  • Chow A, Chau A, Heinz KM (2010) Compatibility of Amblyseius (Typhlodromips) swirskii (Athias-Henriot) (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on roses. Biol Control 53:188–196

    Article  Google Scholar 

  • Cloutier C, Johnson SG (1993) Interaction between life stages in a phytoseiid predator: western flower thrips prey killed by adults as food for protonymphs of Amblyseius cucumeris. Exp Appl Acarol 17:441–449

    Article  Google Scholar 

  • Cock MJW, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F, Bolckmans K, Cônsoli FL, Haas F, Mason PG, Parra JRP (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? Biocontrol 55:199–218

    Article  Google Scholar 

  • Coll M, Salomon-Botner M (2013) On the interplay between omnivores’ behavior and the nutritional value of plant and prey foods. In: Mason PG, Gillespie DR, Vincent C (eds) Proceedings of the 4th International Symposium on biological control of Arthropods. Pucon, Chile, pp 224–225

    Google Scholar 

  • Colomer I, Aguado P, Medina P, Heredia RM, Fereres A, Belda JE, Viñuela E (2011) Field trial measuring the compatibility of methoxyfenozide and flonicamid with Orius laevigatus Fieber (Hemiptera: Anthocoridae) and Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) in a commercial pepper greenhouse. Pest Manag Sci 67:1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Cortesero AM, Stapel JO, Lewis WJ (2000) Understanding and manipulating plant attributes to enhance biological control. Biol Control 17:35–47

    Article  Google Scholar 

  • Cuthbertson AGS, Mathers JJ, Croft P, Nattriss N, Blackburn LF, Luo W, Northing P, Murai T, Jacobson RJ, Walters KFA (2012) Prey consumption rates and compatibility with pesticides of four predatory mites from the family Phytoseiidae attacking Thrips palmi Karny (Thysanoptera: Thripidae). Pest Manag Sci 68:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • de Almeida AA, Janssen A (2013) Juvenile prey induce antipredator behaviour in adult predators. Exp Appl Acarol 59:275–282

    Article  PubMed Central  PubMed  Google Scholar 

  • de Moraes GJ, McMurtry JA, Denmark HA, Campos CB (2004) A revised catalog of the mite family Phytoseiidae. Zootaxa 434:1–494

    Google Scholar 

  • Delisle J, Shipp L, Brodeur J (2015) Influence of supplemental food on the biology and control efficacy of two predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae) on western flower thrips. Exp Appl Acarol. doi:10.1007/s10493-014-9863-2

    Google Scholar 

  • Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • Ferrero M, Gigot C, Tixier M-S, van Houten YM, Kreiter S (2010) Egg hatching response to a range of air humidities for six species of predatory mites. Entomol Exp Appl 135:237–244

    Article  Google Scholar 

  • Gerson U, Weintraub PG (2007) Mites for the control for pests in protected cultivation. Pest Manag Sci 63:658–676

    Article  CAS  PubMed  Google Scholar 

  • Gnanvossou D, Hanna R, Dicke M (2003) Infochemical-mediated intraguild interactions among three predatory mites on cassava plants. Oecologia 135:84–90

    Article  PubMed  Google Scholar 

  • Goleva I, Zebitz CW (2013) Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae). Exp Appl Acarol 61:259–283

    Article  CAS  PubMed  Google Scholar 

  • Gradish AE, Scott-Dupree CD, Shipp L, Harris CR, Ferguson G (2011) Effect of reduced risk pesticides on greenhouse vegetable arthropod biological control agents. Pest Manag Sci 67:82–86

    Article  CAS  PubMed  Google Scholar 

  • Hewitt LC, Shipp L, Buitenhuis R, Scott-Dupree C (2015) Seasonal climatic variations influence the efficacy of predatory mites used for control of western flower thrips in greenhouse ornamental crops. Exp Appl Acarol. doi:10.1007/s10493-014-9861-4

    Google Scholar 

  • Hoda FM, El-Naggar ME, Taha AH, Ibrahim GA (1986) Effect of different types of food on fecundity of predacious mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Bulletin de la Société Entomologique d’Egypte 66:113–116

    Google Scholar 

  • Hoogerbrugge H, van Houten Y, van Baal E, Bolckmans K (2008) Alternative food sources to enable establishment of Amblyseius swirskii (Athias-Henriot) on chrysanthemum without pest presence. IOBC/WPRS Bull 32:79–82

    Google Scholar 

  • Jacobson RJ, Chandler D, Fenlon J, Russel KM (2001) Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris (Acarina: Phytoseiidae) to control Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) on cucumber plants. Biocontrol Sci Technol 11:391–400

    Article  Google Scholar 

  • Janssen A, Montserrat M, HilleRisLambers R, de Roos AM, Pallini A, Sabelis MW (2006) Intraguild predation usually does not disrupt biological control. In: Brodeur J, Boivin G (eds) Trophic and guild interactions in biological control. Springer, Dordrecht, pp 21–44

    Chapter  Google Scholar 

  • Janssen A, Sabelis MW, Magalhaes S, Montserrat M, van der Hammen T (2007) Habitat structure affects intraguild predation. Ecology 88:2713–2719

    Article  PubMed  Google Scholar 

  • Jewett TJ, Jarvis WR (2001) Management of the greenhouse microclimate in relation to disease control: a review. Agronomie 21:351–366

    Article  Google Scholar 

  • Johansen NS, Vänninen I, Pinto DM, Nissinen AI, Shipp L (2011) In the light of new greenhouse technologies: 2. Direct effects of artificial lighting on arthropods and integrated pest management in greenhouse crops. Ann Appl Biol 159:1–27

    Article  Google Scholar 

  • Knapp M, van Houten Y, Hoogerbrugge H, Bolckmans K (2013) Amblydromalus limonicus (Acari: Phytoseiidae) as a biocontrol agent: literature review and new findings. Acarologia 53(2):191–202

    Article  Google Scholar 

  • Lee H-S, Gillespie DR (2011) Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Exp Appl Acarol 53:17–27

    Article  PubMed  Google Scholar 

  • Lindquist RK, Short TL (2004) Effects of greenhouse structure and function on biological control. In: Heinz KM, Van Driesche RG, Parella MP (eds) Biocontrol in protected culture. Ball Publishing, Batavia, pp 37–54

    Google Scholar 

  • Loughner R, Nyrop J, Wentworth K, Sanderson J (2011) Effects of supplemental pollen and fibers on canopy abundance of Amblyseius swirskii. IOBC Bull 68:105–109

    Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    Article  CAS  PubMed  Google Scholar 

  • Messelink G, Janssen A (2008) Do whiteflies help controlling thrips? IOBC/WPRS Bull 32:131–134

    Google Scholar 

  • Messelink GJ, van Steenpaal SEF, Ramakers PMJ (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. Biocontrol 51:753–768

    Article  Google Scholar 

  • Messelink G, van Maanen R, van Steenpaal S, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Control 44:372–379

    Article  Google Scholar 

  • Messelink GJ, van Maanen R, van Holstein-Saj R, Sabelis MW, Janssen A (2010) Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. Biocontrol 55:387–398

    Article  Google Scholar 

  • Messelink GJ, Bloemhard CMJ, Cortes JA, Sabelis MW, Janssen A (2011) Hyperpredation by generalist predatory mites disrupts biological control of aphids by the aphidophagous gall midge Aphidoletes aphidimyza. Biol Control 57:246–252

    Article  Google Scholar 

  • Messelink GJ, Bloemhard CMJ, Sabelis MW, Janssen A (2013) Biological control of aphids in the presence of thrips and their enemies. Biocontrol 58:45–55

    Article  Google Scholar 

  • Midthassel A, Leather S, Baxter I (2013) Life table parameters and capture success ratio studies of Typhlodromips swirskii (Acari: Phytoseiidae) to the factitious prey Suidasia medanensis (Acari: Suidasidae). Exp Appl Acarol 61:69–78

    Article  PubMed  Google Scholar 

  • Momen FM, El-Saway SA (1993) Biology and feeding behaviour of the predatory mite, Amblyseius swirskii (Acari: Phytoseiidae). Acarologia 34:199–204

    Google Scholar 

  • Montserrat M, Janssen A, Magalhaes S, Sabelis MW (2006) To be an intra-guild predator or a cannibal: is prey quality decisive? Ecol Entomol 31:430–436

    Article  Google Scholar 

  • Nguyen D, Vangansbeke D, Clercq P (2014) Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii. Exp Appl Acarol 62:181–194

    Article  CAS  PubMed  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25:271–291

    Article  CAS  PubMed  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27:57–68

    Article  PubMed  Google Scholar 

  • Nomikou M, Janssen A, Sabelis MW (2003) Phytoseiid predator of whitefly feeds on plant tissue. Exp Appl Acarol 31:27–36

    Article  PubMed  Google Scholar 

  • Nomikou M, Meng R, Schraag R, Sabelis MW, Janssen A (2005) How predatory mites find plants with whitefly prey. Exp Appl Acarol 36:263–275

    Article  PubMed  Google Scholar 

  • Nomikou M, Sabelis MW, Janssen A (2010) Pollen subsidies promote whitefly control through the numerical response of predatory mites. Biocontrol 55:253–260

    Article  Google Scholar 

  • Onzo A, Sabelis M, Hanna R (2014) Single versus multiple enemies and the impact on biological control of spider mites in cassava fields in West-Africa. Exp Appl Acarol 62:293–311

    Article  PubMed  Google Scholar 

  • Park HH, Shipp JL, Buitenhuis R (2010) Predation, development, and oviposition by the predatory mite Amblyseius swirkii (Acari: Phytoseiidae) on tomato russet mite (Acari: Eriophyidae). J Econ Entomol 103:563–569

    Article  PubMed  Google Scholar 

  • Park HH, Shipp L, Buitenhuis R, Ahn JJ (2011) Life history parameters of a commercially available Amblyseius swirskii (Acari: Phytoseiidae) fed on cattail (Typha latifolia) pollen and tomato russet mite (Aculops lycopersici). J Asia Pac Entomol 14:497–501

    Article  Google Scholar 

  • Pijnakker J, Ramakers P (2008) Predatory mites for biocontrol of Western flower thrips, Frankliniella occidentalis (Pergande), in cut roses. IOBC Bull 32:171–174

    Google Scholar 

  • Porath A, Swirski E (1965) A survey of phytoseiid mites (Acarina: Phytoseiidae) on citrus, with a description of one new species. Israel Journal of Agricultural Research 15:87–100

    Google Scholar 

  • Ragusa S, Swirski E (1977) Feeding habits, post-embryonic and adult survival, mating, virility and fecundity of the predaceous mite Amblyseius swirskii [Acarina: Phytoseiidae] on some coccids and mealybugs. Entomophaga 22:383–392

    Article  Google Scholar 

  • Rasmy AH, Abou-El-Ella GM, Hussein HE (2004) Cannibalism and interspecific predation of the phytoseiid mite, Amblyseius swirskii. J Pest Sci 77:23–25

    Article  Google Scholar 

  • Sato Y, Mochizuki A (2011) Risk assessment of non-target effects caused by releasing two exotic phytoseiid mites in Japan: can an indigenous phytoseiid mite become IG prey? Exp Appl Acarol 54:319–329

    Article  PubMed  Google Scholar 

  • Schmidt R (2014) Leaf structures affect predatory mites (Acari: Phytoseiidae) and biological control: a review. Exp Appl Acarol 62:1–17

    Article  PubMed  Google Scholar 

  • Seelmann L, Auer A, Hoffmann D, Schausberger P (2007) Leaf pubescence mediates intraguild predation between predatory mites. Oikos 116:807–817

    Article  Google Scholar 

  • Shipp JL, Zhang Y, Hunt DWS, Fergusson G (2003) Influence of humidity and greenhouse microclimate on the efficacy of Beauveria bassiana (Balsamo) for control of greenhouse arthropod pests. Environ Entomol 32:1154–1163

    Article  Google Scholar 

  • Shipp L, Johansen N, Vänninen I, Jacobson R (2009) Greenhouse climate: an important consideration when developing pest management programs for greenhouse crops. Acta Hortic 893:133–143

    Google Scholar 

  • Shipp L, Kapongo JP, Park H-H, Kevan P (2012) Effect of bee-vectored Beauveria bassiana on greenhouse beneficials under greenhouse cage conditions. Biol Control 63:135–142

    Article  Google Scholar 

  • Stansly PA, Castillo J (2009) Control of broad mite Polyphagotarsonemus latus and the whitefly Bemisia tabaci in open field pepper and eggplant with predaceous mites. IOBC/WPRS Bull 49:145–152

    Google Scholar 

  • Swirski E, Amitai S, Dorzia N (1967) Laboratory studies on the feeding, development and reproduction of the predaceous mites Amblyseius rubini Swirski and Amitai and Amblyseius swirskii Athias-Henriot (Acarina: Phytoseiidae) on various kinds of food substances. Isr J Agric Res 17:101–119

    Google Scholar 

  • van Haren RJF, Steenhuis MM, Sabelis MW, de Ponti OMB (1987) Tomato stem trichomes and dispersal success of Phytoseiulus persimilis relative to its prey Tetranychus urticae. Exp Appl Acarol 3:115–121

    Article  Google Scholar 

  • van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57:1–20

    Article  Google Scholar 

  • van Maanen R, Vila E, Sabelis MW, Janssen A (2010) Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Exp Appl Acarol 52:29–34

    Article  PubMed Central  PubMed  Google Scholar 

  • van Maanen R, Messelink GJ, van Holstein R-S, Sabelis MW, Janssen A (2012) Prey temporarily escape from predation in the presence of a second prey species. Ecol Entomol 37:529–535

    Article  Google Scholar 

  • van Rijn PCJ, van Houten YM, Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83:2664–2679

    Article  Google Scholar 

  • Vänninen I, Pinto DM, Nissinen AI, Johansen NS, Shipp L (2010) In the light of new greenhouse technologies: 1. Plant-mediated effects of artificial lighting on arthropods and tritrophic interactions. Ann Appl Biol 157:393–414

    Article  Google Scholar 

  • Weintraub PG, Kleitman S, Mori R, Gan-Mor S, Ganot L, Palevsky E (2009) Novel application of pollen to augment the predator Amblyseius swirskii on greenhouse sweet pepper. IOBC Bull 50:119–124

    Google Scholar 

  • Weintraub PG, Pivonia S, Steinberg S (2011) How many Orius laevigatus are needed for effective western flower thrips, Frankliniella occidentalis, management in sweet pepper? Crop Prot 30:1443–1448

    Article  Google Scholar 

  • Wimmer D, Hoffmann D, Schausberger P (2008) Prey suitability of western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, for the predatory mite Amblyseius swirskii. Biocontrol Sci Technol 18:541–550

    Article  Google Scholar 

  • Xiao Y, Avery P, Chen J, McKenzie C, Osborne L (2012) Ornamental pepper as banker plants for establishment of Amblyseius swirskii (Acari: Phytoseiidae) for biological control of multiple pests in greenhouse vegetable production. Biol Control 63:279–286

    Article  Google Scholar 

  • Xu X, Enkegaard A (2010) Prey preference of the predatory mite, Amblyseius swirskii between first instar western flower thrips Frankliniella occidentalis and nymphs of the twospotted spider mite Tetranychus urticae. J Insect Sci 10:149

    Article  PubMed Central  PubMed  Google Scholar 

  • Zemek R, Nachman G (1999) Interactions in a tritrophic acarine predator–prey metapopulation system: prey location and distance moved by Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 23:21–40

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank their colleagues and three anonymous reviewers for their helpful comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemarije Buitenhuis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buitenhuis, R., Murphy, G., Shipp, L. et al. Amblyseius swirskii in greenhouse production systems: a floricultural perspective. Exp Appl Acarol 65, 451–464 (2015). https://doi.org/10.1007/s10493-014-9869-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-014-9869-9

Keywords

Navigation