Skip to main content

Advertisement

Log in

Leaf structures affect predatory mites (Acari: Phytoseiidae) and biological control: a review

  • Review paper
  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Because of their size, small arthropods can be highly affected by characteristics of the leaf surface. Leaf surfaces have various structures, such as trichomes and domatia, which add to the complexity of the microenvironment experienced by arthropods. Plant structure can affect the retention and performance of predators and parasitoids and it has been proposed that phylloplane characteristics be modified to improve the utility of these organisms as biological control agents. Phytoseiids have a long history as biological control agents of pest mite species in agricultural systems. In the past 30 years, extensive research has shown that trichomes and domatia influence phytoseiid populations and performance. Various reasons have been proposed to explain this relationship, including increased pollen capture for use as a food source, escape from predation, avoidance of adverse abiotic conditions, and increased/decreased ease of prey capture. There is potential for the manipulation of crops to improve biological control by phytoseiids, but incorporating beneficial traits into plants is likely to have lower priority than other breeding characteristics. The objectives of this review are to summarize the evidence for the relationship between phytoseiids and leaf surface structures, discuss possible hypotheses to explain this relationship, examine the potential of altering current crop varieties for the purpose of increasing phytoseiid populations or performance, and conduct a meta-analysis to quantify the effects of plant surface structures on phytoseiid and phytophagous mite densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addison JA, Hardman JM, Walde SJ (2000) Pollen availability for predaceous mites on apple: spatial and temporal heterogeneity. Exp Appl Acarol 24:1–18

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA (1997) Do leaf domatia mediate a plant-mite mutualism? An experimental test of the effects on predators and herbivores. Ecol Entomol 22:371–376

    Article  Google Scholar 

  • Agrawal AA (2000) Mechanisms, ecological consequences and agricultural implications of tri-trophic interactions. Curr Opin Plant Biol 3:329–335

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA, Karban R (1997) Domatia mediate plant-arthropod mutualism. Nature 387:562–563

    Article  CAS  Google Scholar 

  • Agren J, Schemske DW (1992) Artificial selection on trichome number in Brassica rapa. Theor Appl Genet 83:673–678

    CAS  PubMed  Google Scholar 

  • Barret D, Kreiter S (1995) Morphometrics of some phytoseiid predatory mites and characteristics of their habitat: consequences for biological control. In: Kropczynska D, Boczek J, Tomczyk A (eds) The Acari: Physiological and Ecological Aspects of Acari-Host Relationships. Dabor, Warsaw, pp 461–473

    Google Scholar 

  • Beard JJ, Walter GH (2001) Host plant specificity in several species of generalist mite predators. Ecol Entomol 26:562–570

    Article  Google Scholar 

  • Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to Meta-Analysis. John Wiley and Sons, Ltd., West Sussex

    Book  Google Scholar 

  • Bottrell DG, Barbosa P (1998) Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annu Rev Entomol 43:347–367

    Article  CAS  PubMed  Google Scholar 

  • Brown S (2012) Apple. In: Badenes ML, Byrne DH (eds) Fruit Breeding. Handbook of Plant Breeding. Springer, New York, pp 329–367

    Chapter  Google Scholar 

  • Byrne DH (2012) Trends in fruit breeding. In: Badenes ML, Byrne DH (eds) Fruit breeding. Handbook of Plant Breeding. Springer, New York, pp 3–36

    Chapter  Google Scholar 

  • Camporese P, Duso C (1996) Different colonization patterns of phytophagous and predatory mites (Acari: Tetranychidae, Phytoseiidae) on three grape varieties: a case study. Exp Appl Acarol 20:1–22

    Google Scholar 

  • Carena MJ (ed) (2009) Cereals, vol 3. Handbook of Plant Breeding. Springer, New York

    Google Scholar 

  • Carrillo D, Pena JE, Capinera JL (2008) Effect of host plants on successful parasitism by Haeckeliania sperata (Hymenoptera: Trichogrammatidae) on Diaprepes abbreviatus (Coleoptera: Curculionidae). Environ Entomol 37:1565–1572

    Article  PubMed  Google Scholar 

  • Cedola CV, Sanchez NE, Liljesthrom GG (2001) Effect of tomato leaf hairiness on functional and numerical response of Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 25:819–831

    Article  CAS  PubMed  Google Scholar 

  • Chaing H-S, Norris DM (1983) Morphological and physiological parameters of soybean resistance to Agromyzid beanflies. Environ Entomol 12:260–265

    Google Scholar 

  • Cortesero AM, Stapel JO, Lewis WJ (2000) Understanding and manipulating plant attributes to enhance biological control. Biol Control 17:35–49

    Article  Google Scholar 

  • Croft BA (1990) Factors affecting susceptibility. In: Arthropod biological control agents and pesticides. John Wiley & Sons, Inc., pp 71–100

  • Croft BA, Blackwood JS, McMurtry JA (2004) Classifying life-style types of phytoseiid mites: diagnostic traits. Exp Appl Acarol 33:247–260

    Article  Google Scholar 

  • Dellinger TA, Youngman RR, Laub CA, Brewster CC, Kuhar TP (2005) Host effects of glandular-haired alfalfa on alfalfa weevil (Coleoptera: Curculionidae) and potato leafhopper (Homoptera: Cicadellidae) populations in Virginia. J Econ Entomol 98:72–81

    Article  PubMed  Google Scholar 

  • Downing RS, Moilliet TK (1967) Relative densities of predaceous and phytophagous mites on three varieties of apple trees. Can Entomol 99:738–741

    Article  Google Scholar 

  • Duso C (1992) Role of Amblyseius aberrans (Oud.), Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari, Phytoseiidae) in vineyards. J Appl Entomol 114:455–462

    Article  Google Scholar 

  • Duso C, Vettorazzo E (1999) Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae). Exp Appl Acarol 23:741–763

    Article  CAS  PubMed  Google Scholar 

  • Duso C, Pasini M, Pellegrini M (2003) Distribution of the predatory mite Typhlodromus pyri (Acari: Phytoseiidae) on different apple cultivars. Biocontrol Sci Technol 13:671–681

    Article  Google Scholar 

  • Duso C, Fanti M, Pozzebon A, Angeli G (2009) Is the predatory mite Kampimodromus aberrans a candidate for the control of phytophagous mites in European apple orchards? Biocontrol 54:369–382

    Article  Google Scholar 

  • Eigenbrode SD, Jetter R (2002) Attachment to plant surface waxes by an insect predator. Integr Comp Biol 42:1091–1099

    Article  CAS  PubMed  Google Scholar 

  • English-Loeb G, Norton AP, Walker MA (2002) Behavioral and population consequences of acarodomatia in grapes on phytoseiid mites (Mesostigmata) and implications for plant breeding. Entomol Exp Appl 104:307–319

    Article  Google Scholar 

  • Faraji F, Janssen A, Sabelis MW (2002) Oviposition patterns in a predatory mite reduce the risk of egg predation caused by prey. Ecol Entomol 27:660–664

    Article  Google Scholar 

  • Ferreira JAM, Eshuis B, Janssen A, Sabelis MW (2008) Domatia reduce larval cannibalism in predatory mites. Ecol Entomol 33:374–379

    Article  Google Scholar 

  • Ferreira JAM, Pallini A, Oliveira CL, Sabelis MW, Janssen A (2010) Leaf domatia do not affect population dynamics of the predatory mite Iphiseiodes zuluagai. Basic Appl Ecol 11:144–152

    Article  Google Scholar 

  • Ferreira JAM, Cunha DFS, Pallini A, Sabelis MW, Janssen A (2011) Leaf domatia reduce intraguild predation among predatory mites. Ecol Entomol 36:435–441

    Article  Google Scholar 

  • Gerson U, Smiley RL, Ochoa R (2003) The Phytoseiidae. In: Mites (Acari) for pest control. Blackwell Science Ltd, Oxford, UK, pp 173–218

  • Glas JJ, Schimmel BCJ, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 13:17077–17103

    Article  CAS  PubMed  Google Scholar 

  • Grostal P, O’Dowd DJ (1994) Plants, mites and mutualism: leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae). Oecologia 97:308–315

    Google Scholar 

  • Hoy MA (2011a) The Phytoseiidae: effective natural enemies. In: Agricultural acarology: introduction to integrated mite management. Taylor and Francis Group, LLC, Boca Raton, FL, pp 159–184. doi:10.1201/b10909-16

  • Hoy MA (2011b) Tetranychidae: premier plant pests. In: Agricultural acarology: introduction to integrated mite management. Taylor and Francis Group, LLC, Boca Raton, FL, pp 85–92

  • Huotilainen A, Tuorila H (2005) Social representation of new foods has a stable structure based on suspicion and trust. Food Qual Prefer 16:565–572

    Article  Google Scholar 

  • Invancich Gambaro P (1998) Natural alternative food for Amblyseius andersoni Chant (Acarina: Phytoseiidae) on plants without prey. Redia 71:161–171

    Google Scholar 

  • Karban R, English-Loeb G, Walker MA, Thaler J (1995) Abundance of phytoseiid mites on Vitis species: effects of leaf hairs, domatia, prey abundance, and plant phylogeny. Exp Appl Acarol 19:189–197

    Article  Google Scholar 

  • Kennedy GG (2003) Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol 48:51–72

    Article  CAS  PubMed  Google Scholar 

  • Kreiter S, Tixier M-S, Croft BA, Auger P, Barret D (2002) Plants and leaf characteristics influencing the predaceous mite Kampimodromus aberrans (Acari: Phytoseiidae) in habitats surrounding vineyards. Environ Entomol 31:648–660

    Article  Google Scholar 

  • Kreiter S, Tixier M-S, Bourgeois T (2003) Do generalist phytoseiid mites (Gamasida: Phytoseiidae) have interactions with their host plants? Int J Trop Insect Sci 23:35–50

    Article  Google Scholar 

  • Krips OE, Kleijn PW, Willems PEL, Gols GJZ, Dicke M (1999) Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 23:119–131

    Article  Google Scholar 

  • Lampert EP, Haynes DL, Sawyer AJ, Jokinen DP, Wellso GG, Gallun RL, Roberts JJ (1983) Effects of regional releases of resistant wheats on the population dynamics of the cereal leaf beetle (Coleoptera: Chrysomelidae). Ann Entomol Soc Am 76:972–980

    Google Scholar 

  • Levin DA (1973) The role of trichomes in plant defense. Q Rev Bio 48:3–15

    Article  Google Scholar 

  • Loughner R, Goldman K, Loeb G, Nyrop J (2008) Influence of leaf trichomes on predatory mite (Typhlodromus pyri) abundance in grape varieties. Exp Appl Acarol 45:111–122

    Article  CAS  PubMed  Google Scholar 

  • Loughner R, Wentworth K, Loeb G, Nyrop J (2010a) Influence of leaf trichomes on predatory mite density and distribution in plant assemblages and implications for biological control. Biol Control 54:255–262

    Article  Google Scholar 

  • Loughner R, Wentworth K, Loeb G, Nyrop J (2010b) Leaf trichomes influence predatory mite densities through dispersal behavior. Entomol Exp Appl 134:78–88

    Article  Google Scholar 

  • Matos CHC, Pallini A, Chaves FF, Schoereder JH, Janssen A (2006) Do domatia mediate mutualistic interactions between coffee plants and predatory mites? Entomol Exp Appl 118:185–192

    Article  Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    Article  CAS  PubMed  Google Scholar 

  • Muller C, Riederer M (2005) Plant surface properties in chemical ecology. J Chem Ecol 31:2621–2651

    Article  PubMed  Google Scholar 

  • O’Connell DM, Lee WG, Monks A, Dickinson KJM (2010) Does microhabitat structure affect foliar mite assemblages. Ecol Entomol 35:317–328

    Article  Google Scholar 

  • O’Dowd DJ, Pemberton RW (1998) Leaf domatia and foliar mite abundance in broadleaf deciduous forest of North Asia. Am J Bot 85:70–78

    Article  PubMed  Google Scholar 

  • O’Dowd DJ, Willson MF (1989) Leaf domatia and mites on Australasian plants: ecological and evolutionary implications. Biol J Linn Soc 37:191–236

    Article  Google Scholar 

  • O’Dowd DJ, Willson MF (1991) Assocations between mites and leaf domatia. TREE 6:179–1820

    PubMed  Google Scholar 

  • Onzo A, Hanna R, Zannour I, Sabelis MW, Yaninek JS (2003) Dynamics of refuge use: diurnal, vertical migration by predatory and herbivorous mites within cassava plants. Oikos 101:59–69

    Article  Google Scholar 

  • Pemberton RW, Turner CE (1989) Occurrence of predatory and fungivorous mites in leaf domatia. Am J Bot 76:105–112

    Article  Google Scholar 

  • Poppy GM, Sutherland JP (2004) Can biological control benefit from genetically-modified crops? Tritrophic interactions on insect-resistant transgenic plants. Physiol Entomol 29:257–268

    Article  Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Article  Google Scholar 

  • Putman WL (1962) Life-history and behaviour of the predacious mite Typhlodromus (T.) caudiglans Schuster (Acarina: Phytoseiidae) in Ontario, with notes on the prey of related species. Can Entomol 94:163–177

    Article  Google Scholar 

  • Rasmy AH, El-Banhawy EM (1974) Behavior and bionomics of the predatory mite Phytoseius plumifer (Acarina: Phytoseiidae) as affected by physical surface features of host plants. Entomophaga 19:255–257

    Article  Google Scholar 

  • Reisch BI, Owens CL, Cousins PS (2012) Grape. In: Badenes ML, Byrne DH (eds) Fruit Breeding. Handbook of Plant Breeding. Springer, New York, pp 225–262

    Chapter  Google Scholar 

  • Roda A, Nyrop J, Dicke M, English-Loeb G (2000) Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation. Oecologia 125:428–435

    Article  Google Scholar 

  • Roda A, Nyrop J, English-Loeb G, Dicke M (2001) Leaf pubescence and two-spotted spider mite webbing influence phytoseiid behavior and population density. Oecologia 129:551–560

    Google Scholar 

  • Roda A, Nyrop J, English-Loeb G (2003) Leaf pubescence mediates the abundance of non-prey food and the density of the predatory mite Typhlodromus pyri. Exp Appl Acarol 29:193–211

    Article  CAS  PubMed  Google Scholar 

  • Romero GQ, Benson WW (2004) Leaf domatia mediate mutualism between mites and a tropical tree. Oecologia 140:609–616

    Article  PubMed  Google Scholar 

  • Romero GQ, Benson WW (2005) Biotic interactions of mites, plants and leaf domatia. Curr Opin Plant Biol 8:436–440

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg MS, Adams DC, Gurevitch J (2011) MetaWin: statistical software for meta-analysis. Edition 2.1. www.metawinsoft.com

  • Rowles AD, O’Dowd DJ (2009) Leaf domatia and protection of a predatory mite Typhlodromus doreenae Schica (Acari: Phytoseiidae) from drying humidity. Austr J Entomol 48:276–281

    Article  Google Scholar 

  • Rozario SA (1995) Association between mites and leaf domatia: evidence from Bangladesh, South Asia. J Trop Ecol 11:99–108

    Article  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005a) Host-plant selection: when to accept a plant. In: Insect-plant biology. 2nd edn. Oxford University Press, New York, NY, pp 169–208

  • Schoonhoven LM, van Loon JJA, Dicke M (2005b) Insects and plants: how to apply our knowledge. In: Insect-plant biology. 2nd edn. Oxford University Press, New York, NY, pp 336–363

  • Schoonhoven LM, van Loon JJA, Dicke M (2005c) Plant structure: the solidity of anti-herbivore protection. In: Insect-plant biology. 2nd edn. Oxford University Press, New York, NY, pp 29–47

  • Seelmann L, Auer A, Hoffmann D, Schausberger P (2007) Leaf pubescence mediates intraguild predation between predatory mites. Oikos 116:807–817

    Article  Google Scholar 

  • Shelton AM, Zhao J-Z, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  PubMed  Google Scholar 

  • Shockley FW, Backus EA (2002) Repellancy to the potato leafhopper (Homoptera: Cicadellidae) by erect glandular trichomes on alfalfa. Environ Entomol 31:22–29

    Article  Google Scholar 

  • Siegrist M (2008) Factors influencing public acceptance of innovative food technologies and products. Trends Food Sci Tech 19:603–608

    Article  CAS  Google Scholar 

  • Smith D, Papacek DF (1991) Studies of the predatory mite Amblyseius victoriensis (Acarina: Phytoseiidae) in citrus orchards in south-east Queensland: control of Tegolophus australis and Phyllocoptruta oleivora (Acarina: Eriophyidae), effect of pesticides, alternative host plants and augmentative release. Exp Appl Acarol 12:195–217

    Article  CAS  Google Scholar 

  • Smith RL, Wilson RL, Wilson FD (1975) Resistance of cotton plant hairs to mobility of first instars of the pink bollworm. J Econ Entomol 68:679–683

    Google Scholar 

  • Southwood R (1986) Plant surfaces and insects- an overview. In: Juniper B, Southwood R (eds) Insects and the Plant Surface. Edward Arnold, Oxford, pp 1–22

    Google Scholar 

  • Speight MR, Hunter MD, Watt AD (2009) Insect pest management. In: Ecology of insects. 2nd edn. Wiley-Blackwell, Oxford, UK, pp 429–513

  • Tilney PM, van Wyk AE, van der Merwe CF (2012) Structural evidence in Plectroniella armata (Rubiaceae) for possible material exchange between domatia and mites. PLoS ONE 7:e39984. doi:10.1371/journal.pone.0039984

    Article  CAS  PubMed  Google Scholar 

  • Walter DE (1992) Leaf surface structure and the distribution of Phytoseius mites (Acarina: Phytoseiidae) in South-eastern Australian forests. Austr J Zool 40:593–603

    Article  Google Scholar 

  • Walter DE (1996) Living on leaves: mites, tomentia, and leaf domatia. Annu Rev Entomol 41:101–114

    Article  CAS  PubMed  Google Scholar 

  • Walter DE, O’Dowd DJ (1992) Leaf morphology and predators: effect of leaf domatia on the abundance of predatory mites (Acari: Phytoseiidae). Environ Entomol 21:478–484

    Google Scholar 

  • Xu L, Zhu H, Ozkan HE, Bagley WE, Krause CR (2010) Droplet evaporation and spread on waxy and hairy leaves associated with type and concentration of adjuvants. Pest Manag Sci 67:842–851

    Article  Google Scholar 

  • Zemek R, Prenerova E (1997) Powdery mildew (Ascomycotina: Erysiphales)—an alternative food for the predatory mite Typhlodromus pyri Scheuten (Acari: Phytoseiidae). Exp Appl Acarol 21:405–414

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Jim McMurtry, Elizabeth Beers, David Crowder, and Nilsa Bosque-Perez for comments on the manuscript. I would especially like to thank Sanford Eigenbrode, who originally encouraged the publication of this manuscript, and Arne Janssen, who provided invaluable advice regarding the meta-analysis and the contents of the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca A. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R.A. Leaf structures affect predatory mites (Acari: Phytoseiidae) and biological control: a review. Exp Appl Acarol 62, 1–17 (2014). https://doi.org/10.1007/s10493-013-9730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-013-9730-6

Keywords

Navigation