Skip to main content
Log in

Unified simulation of hardening and softening effects for metals up to failure

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Toward accurately simulating both hardening and softening effects for metals up to failure, a new finite strain elastoplastic J2-flow model is proposed with the yield strength therein as a function of the plastic work in the explicit form. With no need to identify any adjustable parameters, the uniaxial stress-strain response predicted from this new model is shown to automatically and accurately match any given data from monotonic uniaxial extension tests of bars. As such, the objectives in three respects are achieved for the first time, i.e., (i) both the hardening and softening effects up to failure can be simulated in the sense of matching test data with no errors, (ii) the usual tedious implicit procedures toward identifying numerous unknown parameters need not be involved and can be totally bypassed, and (iii) the model applicability can be ensured in a broad sense for various metallic materials with markedly different transition effects from hardening to softening. With the new model, the complete response features of stretched bars and twisted tubes up to failure are studied, including the failure effects of bars under monotonic extension and tubes under monotonic torsion and, furthermore, the fatigue failure effects of bars under cyclic loading. The results show accurate agreement with the uniaxial data, and the results for both the shear stress and the normal stress at the finite torsion display realistic hardening-to-softening transition effects for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XIAO, H. Thermo-coupled elastoplasticity models with asymptotic loss of the material strength. International Journal of Plasticity, 63, 211–228 (2014)

    Article  Google Scholar 

  2. WANG, Z. L., LI, H., YIN, Z. N., and XIAO, H. A new, direct approach toward modeling thermocoupled fatigue failure behavior of metals and alloys. Acta Mechanica Solida Sinica, 30, 1–9 (2017)

    Article  Google Scholar 

  3. WANG, Z. L. and XIAO, H. Direct modeling of multi-axial fatigue failure for metals. International Journal of Solids and Structures, 125, 216–231 (2017)

    Article  Google Scholar 

  4. VOCE, E. The relationship between stress and strain for homogeneous deformation. Journal of the Institute of Metals, 74, 537–562 (1948)

    Google Scholar 

  5. SWIFT, H. W. Plastic instability under plane stress. Journal of the Mechanics and Physics of Solids, 1, 1–18 (1952)

    Article  Google Scholar 

  6. WHITEMAN, I. R. A mathematical model depicting the stress-strain diagram and the hysteresis loop. ASME Journal of Applied Mechanics, 81, 95–102 (1959)

    Article  MATH  Google Scholar 

  7. LUDWIGSON, D. C. Modified stress-strain relation for FCC metals and alloys. Metallurgical Transactions, 2, 2825–2828 (1971)

    Article  Google Scholar 

  8. HARTLEY, C. S. and SRINIVASAN, R. Constitutive equations for large plastic deformation of metals. Journal of Engineering Materials and Technology, 105, 162–169 (1983)

    Article  Google Scholar 

  9. JOHNSON, G. R. and COOK, W. H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Engineering Fracture Mechanics, 21, 541–548 (1983)

    Google Scholar 

  10. BARAGER, D. L. The high temperature and high strain-rate behaviour of a plain carbon and an HSLA steel. Journal of Mechanical Working Technology, 14, 296–307 (1987)

    Google Scholar 

  11. ZERILLI, F. J. and ARMSTRONG, R. W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations. Journal of Applied Physics, 68, 1580–1591 (1990)

    Article  Google Scholar 

  12. SUNG, J. H., KIM, J. H., and WAGONER, R. H. A plastic constitutive equation incorporating strain, strain-rate, and temperature. International Journal of Plasticity, 26, 1746–1771 (2010)

    Article  MATH  Google Scholar 

  13. CHABOCHE, J. L. A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity, 24, 1642–1693 (2008)

    Article  MATH  Google Scholar 

  14. BRUHNS, O. T. The Prandtl-Reuss equations revisited. Zeitschrift für Angewandte Mathematik und Mechanik, 94, 187–202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. SHAW, J. A. and KYRIAKIDES, S. Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension. International Journal of Plasticity, 13, 837–871 (1997)

    Article  Google Scholar 

  16. KANG, G. Z. A visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation. Mechanics of Materials, 36, 299–312 (2004)

    Article  Google Scholar 

  17. ZHAO, W. J., YANG, S. P., WEN, G. L., and REN, X. H. Fractional-order visco-plastic constitutive model for uniaxial ratcheting behaviors. Applied Mathematics and Mechanics (English Edition), 41(1), 49–62 (2019) https://doi.org/10.1007/s10483-019-2413-8

    Article  MathSciNet  MATH  Google Scholar 

  18. PAREDES, M. and WIERZBICKI, T. On mechanical response of Zircaloy-4 under a wider range of stress states: from uniaxial tension to uniaxial compression. International Journal of Solids and Structures, 206, 198–223 (2020)

    Article  Google Scholar 

  19. YU, C. Y., KAO, P. W., and CHANG, C. P. Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Materialia, 53, 4019–4028 (2005)

    Article  Google Scholar 

  20. SEGAL, V. M., FERRASSE, S., and ALFORD, F. Tensile testing of ultra fine grained metals. Materials Science and Engineering: A, 422(3), 321–326 (2006)

    Article  Google Scholar 

  21. HUANG, C. X., WU, S. D., LI, S. X., and ZHANG, Z. F. Strain hardening behavior of ultrafine-grained Cu by analyzing the tensile stress-strain curve. Advanced Engineering Materials, 10, 434–439 (2010)

    Article  Google Scholar 

  22. LIN, P., HE, Z. B., YUAN, S. J., and SHEN, J. Tensile deformation behavior of Ti-22Al-25Nb alloy at elevated temperatures. Materials Science and Engineering: A, 556, 617–624 (2012)

    Article  Google Scholar 

  23. WANG, X. S., HU, W. L., HUANG, S. J., and DING, R. Experimental investigations on extruded 6063 aluminium alloy tubes under complex tension-compression stress states. International Journal of Solids and Structures, 168, 123–137 (2019)

    Article  Google Scholar 

  24. LEHMANN, T. Einige Bemerkungen zu einer allgemeinen Klasse von Stoffgesetzen für große elasto-plastische Formänderungen. Ingenieur-Archiv, 41(4), 297–310 (1972)

    Article  MATH  Google Scholar 

  25. DIENES, J. K. On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica, 32, 217–232 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. NAGTEGAAL, J. C. and DE JONG, J. E. Some aspects of non-isotropic work-hardening in finite strain plasticity. Plasticity of Metals at Finite Strain, Theory, Computation and Experiment (eds., LEE, E. H. and MALLETT, R. L.), Stanford University Press, Stanford, 65–102 (1982)

    Google Scholar 

  27. ATLURI, S. N. On constitutive relations at finite strain: hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening. Computer Methods in Applied Mechanics and Engineering, 43, 137–171 (1984)

    Article  MATH  Google Scholar 

  28. REED, K. W. and ATLURI, S. N. Constitutive modeling and computational implementation for finite strain plasticity. International Journal of Plasticity, 1, 63–87 (1985)

    Article  MATH  Google Scholar 

  29. BRUHNS, O. T., XIAO, H., and MEYERS, A. Large simple shear and torsion problems in kinematic hardening elastoplasticity with logarithmic rate. International Journal of Solids and Structures, 38, 8701–8722 (2001)

    Article  MATH  Google Scholar 

  30. BRUHNS, O. T., XIAO, H., and MEYERS, A. Large-strain response of isotropic-hardening elasto-plasticity with logarithmic rate: swift effect in torsion. Archive of Applied Mechanics, 71, 389–404 (2001)

    Article  MATH  Google Scholar 

  31. BAKHSHIANI, A., MOFID, M., KHOEI, A. R., and MCCABE, S. L. Finite strain simulation of thin-walled tube under torsion using endochronic theory of plasticity. Thin-Walled Structures, 41, 435–459 (2003)

    Article  Google Scholar 

  32. COLAK, O. U. Modeling of large simple shear using a viscoplastic overstress model and classical plasticity model with different objective stress rates. Acta Mechanica, 167, 171–187 (2004)

    Article  MATH  Google Scholar 

  33. XIAO, H., BRUHNS, O. T., and MEYERS, A. Objective stress rates, cyclic deformation paths, and residual stress accumulation. Zeitschrift für Angewandte Mathematik und Mechanik, 86, 843–855 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. TRAJKOVIĆ-MILENKOVIĆ, M. and BRUHNS, O. T. Logarithmic rate implementation in constitutive relations of finite elastoplasticity with kinematic hardening. Zeitschrift für Angewandte Mathematik und Mechanik, 98, 1237–1248 (2018)

    Article  MathSciNet  Google Scholar 

  35. XIAO, H. Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscipline Modeling in Materials and Structures, 1, 1–51 (2005)

    Article  Google Scholar 

  36. XIAO, H., BRUHNS, O. T., and MEYERS, A. Elastoplasticity beyond small deformations. Acta Mechanica, 182, 31–111 (2006)

    Article  MATH  Google Scholar 

  37. BRUHNS, O. T. Large deformation plasticity. Acta Mechanica Sinica, 36, 472–492 (2020)

    Article  MathSciNet  Google Scholar 

  38. XIAO, H. Deformable micro-continua in which quantum mysteries reside. Applied Mathematics and Mechanics (English Edition), 41(12), 1805–1830 (2019) https://doi.org/10.1007/s10483-019-2546-6

    Article  MathSciNet  MATH  Google Scholar 

  39. XIAO, H., BRUHNS, O. T., and MEYERS, A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica, 124, 89–105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. XIAO, H., BRUHNS, O. T., and MEYERS, A. On objective corotational rates and their defining spin tensors. International Journal of Solids and Structures, 35, 4001–4014 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. XIAO, H., BRUHNS, O. T., and MEYERS, A. Strain rates and material spins. Journal of Elasticity, 52, 1–41 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. BRUHNS, O. T., XIAO, H., and MEYERS, A. Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate. International Journal of Plasticity, 15, 479–520 (1999)

    Article  MATH  Google Scholar 

  43. BRUHNS, O. T., XIAO, H., and MEYERS, A. Some basic issues in traditional Eulerian formulations of finite elastoplasticity. International Journal of Plasticity, 19, 2007–2026 (2003)

    Article  MATH  Google Scholar 

  44. XIAO, H., BRUHNS, O. T., and MEYERS, A. Thermodynamic laws and consistent Eulerian formulation of finite elastoplasticity with thermal effects. Journal of the Mechanics and Physics of Solids, 55, 338–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. WANG, S. Y., ZHAN, L., WANG, Z. L., YIN, Z. N., and XIAO, H. A direct approach toward simulating cyclic and non-cyclic fatigue failure of metals. Acta Mechanica, 228, 4325–4330 (2017)

    Article  Google Scholar 

  46. WANG, Y. S., ZHAN, L., XI, H. F., and XIAO, H. Coupling effects of finite rotation and strain-induced anisotropy on monotonic and cyclic failure of metals. Acta Mechanica, 229, 4963–4975 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. ZHAN, L., WANG, S. Y., XI, H. F., and XIAO, H. Direct simulation of thermo-coupled fatigue failure for metals. Zeitschrift für Angewandte Mathematik und Mechanik, 98, 856–869 (2018)

    Article  MathSciNet  Google Scholar 

  48. ZHAN, L., WANG, S. Y., XI, H. F., and XIAO, H. Innovative elastoplastic J2-flow model incorporating cyclic and non-cyclic failure effects of metals as inherent constitutive features. Zeitschrift für Angewandte Mathematik und Mechanik, 99, e201900023 (2019)

    Article  Google Scholar 

  49. BRIDGMAN, P. W. Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York (1952)

    MATH  Google Scholar 

  50. TARDIF, N. and KYRIAKIDES, S. Determination of anisotropy and material hardening for aluminum sheet metal. International Journal of Solids and Structures, 49, 3496–3506 (2012)

    Article  Google Scholar 

  51. KIM, J. H., SERPANTÉ, A., BARLAT, F., PIERRON, F., and LEE, M. G. Characterization of the post-necking strain hardening behavior using the virtual fields method. International Journal of Solids and Structures, 50, 3829–3842 (2013)

    Article  Google Scholar 

  52. GERBIG, D., BOWER, A., SAVIC, V., and HECTOR, L. G. Coupling digital image correlation and finite element analysis to determine constitutive parameters in necking tensile specimens. International Journal of Solids and Structures, 97–98, 496–509 (2016)

    Article  Google Scholar 

  53. DING, X. F., ZHAN, L., XI, H. F., and XIAO, H. A unified simulation for effects of gellan polymer concentrations on large strain elastic behaviors of gellan gels. Multidiscipline Modeling in Materials and Structures, 15, 859–870 (2019)

    Article  Google Scholar 

  54. WANG, S. Y., ZHAN, L., XI, H. F., and XIAO, H. New finite strain elastoplastic equations for accurately and explicitly simulating pseudoelastic-to-plastic transition effects of SMAs. Applied Mathematics and Mechanics (English Edition), 41(12), 1582–1596 (2020) https://doi.org/10.1007/s10483-020-2659-7

    Google Scholar 

  55. ZHAN, L., WANG, X. M., WANG, S. Y., XI, H. F., and XIAO, H. An explicit and accurate approach toward simulating plastic-to-pseudoelastic transitions of SMAs under multiple loading and unloading cycles. International Journal of Solids and Structures, 185–186, 104–115 (2020)

    Article  Google Scholar 

  56. WANG, S. Y., ZHAN, L., XI, H. F., and XIAO, H. A unified approach toward simulating constant and varying amplitude fatigue failure effects of metals with fast and efficient algorithms. Acta Mechanica Solida Sinica, 34, 53–64 (2021)

    Article  Google Scholar 

  57. WANG, S. Y., ZHAN, L., BRUHNS, O. T., and XIAO, H. Metal failure effects predicted accurately with a unified and explicit criterion. Zeitschrift für Angewandte Mathematik und Mechanik, 101, e202100140 (2021)

    Article  Google Scholar 

  58. ZHOU, Q., QIAN, L. H., MENG, J. Y., ZHAO, L. J., and ZHANG, F. C. Low-cycle fatigue behavior and microstructural evolution in a low-carbon carbide-free bainitic steel. Materials and Design, 85, 487–496 (2015)

    Article  Google Scholar 

  59. OKUBO, S. and FUKUI, K. Complete stress-strain curves, for various rock types in uniaxial tension. International Journal of Rock Mechanics and Mining Sciences and Geomechanics, 33, 549–556 (1996)

    Article  Google Scholar 

  60. KIM, S. M. and AL-RUB, R. K. A. Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cement and Concrete Research, 41, 339–358 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. T. Bruhns or Heng Xiao.

Additional information

Citation: WANG, S. Y., ZHAN, L., XI, H. F., BRUHNS, O. T., and XIAO, H. Unified simulation of hardening and softening effects for metals up to failure. Applied Mathematics and Mechanics (English Edition), 42(12), 1685–1702 (2021) https://doi.org/10.1007/s10483-021-2793-6

Project supported by the National Natural Science Foundation of China (Nos. 12172149 and 12172151) and the Start-up Fund from Jinan University of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhan, L., Xi, H. et al. Unified simulation of hardening and softening effects for metals up to failure. Appl. Math. Mech.-Engl. Ed. 42, 1685–1702 (2021). https://doi.org/10.1007/s10483-021-2793-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2793-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation