Skip to main content
Log in

A direct approach toward simulating cyclic and non-cyclic fatigue failure of metals

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new finite \(J_2-\)flow rate-dependent elastoplastic model is proposed toward directly simulating cyclic and non-cyclic fatigue failure behavior of metals. Novel results in four respects are presented: (1) the concept of yielding is rendered irrelevant with smooth transitions to both the plastic state and the rate-independent case; (2) asymptotic loss of the strength is incorporated as inherent constitutive feature; (3) the failure behavior may accordingly be derived as a direct consequence of the proposed model, without involving any additional failure criteria and any additional variables; and (4) direct and explicit procedures are established for identifying each rate-dependent parameter based on suitable test data. Numerical examples are provided for various uniaxial loading cases up to failure, including monotone and cyclic strain cases from low to high strain rates and cyclic loading cases as well as non-cyclic loading cases with either variable stress amplitudes or variable strain rates. Model predictions compare well with test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argon, A.S.: Topics in Fracture and Fatigue. Springer, Berlin (2011)

    Google Scholar 

  2. Bonora, N., Gentile, D., Pirondi, A., Newaz, G.: Ductile damage evolution under triaxial state of stress: theory and experiments. Int. J. Plast. 21, 981–1007 (2005)

    Article  MATH  Google Scholar 

  3. Bruhns, O.T., Xiao, H., Meyers, A.: Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate. Int. J. Plast. 15, 479–520 (1999)

    Article  MATH  Google Scholar 

  4. Bruhns, O.T., Xiao, H., Meyers, A.: Some basic issues in traditional Eulerian formulations of finite elastoplasticity. Int. J. Plast. 19, 2007–2026 (2003)

    Article  MATH  Google Scholar 

  5. Bruhns, O.T., Xiao, H., Meyers, A.: A weakened form of Ilyushins postulate and the structure of self-consistent Eulerian finite elastoplasticity. Int. J. Plast. 21, 199–219 (2005)

    Article  MATH  Google Scholar 

  6. Brünig, M.: An anisotropic ductile damage model based on irreversible thermodynamics. Int. J. Plast. 19, 1679–1713 (2003)

    Article  MATH  Google Scholar 

  7. Brünig, M.: Numerical analysis of anisotropic ductile continuum damage. Compt. Meth. Appl. Mech. Eng. 192, 2749–2776 (2003)

    Article  MATH  Google Scholar 

  8. Brünig, M.: A continuum damage model based on experiments and numerical simulations-A review. In: Altenbach, H., Matsuda, T., Okumura, D. (eds.) From Creep Damage Mechanics to Homogenization Methods - A Liber Amicorum to Celebrate the Brithday of Nobutada Ohno. Advanced Structural Materials Series, pp. 19–35. Springer, Berlin (2015)

    Chapter  Google Scholar 

  9. Brünig, M., Chyra, O., Albrecht, D., Driemeier, L., Alves, M.: A ductile damage criterion at various stress triaxialities. Int. J. Plast. 24, 1731–1755 (2008)

    Article  MATH  Google Scholar 

  10. Brünig, M., Gerke, S.: Simulation of damage evolution in ductile metals undergoing dynamic loading conditions. Int. J. Plast. 27, 1598–1617 (2011)

    Article  MATH  Google Scholar 

  11. Brünig, M., Gerke, S., Hagenbrock, V.: Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage. Int. J. Plast. 50, 49–65 (2013)

    Article  Google Scholar 

  12. Brünig, M., Ricci, S.: Nonlocal continuum theory of anisotropically damaged metals. Int. J. Plast. 21, 1346–1382 (2005)

    Article  MATH  Google Scholar 

  13. Chung, K., Ma, N., Park, T., Kim, D., Yoo, D., Kim, C.: A modified damage model for advanced high strength steel sheets. Int. J. Plast. 27, 1485–1511 (2011)

    Article  MATH  Google Scholar 

  14. Giroux, P., Dalle, F., Sauzay, M., Malaplate, J., Fournier, B., Gourgues-Lorenzon, A.: Mechanical and microstructural stability of P92 steel under uniaxial tension at high temperature. Mater. Sci. Eng. A 527, 3984–3993 (2010)

    Article  Google Scholar 

  15. Koster, M., Lis, A., Lee, W.J., Kenel, C., Leinenbach, C.: Influence of elasticplastic base material properties on the fatigue and cyclic deformation behavior of brazed steel joints. Int. J. Fatigue 82, 49–59 (2016)

    Article  Google Scholar 

  16. Macha, E., Nieslony, A.: Critical plane fatigue life models of materials and structures under multiaxial stationary random loading: The state-of-the-art in Opole Research Centre CESTI and directions of future activities. Int. J. Fatigue 39, 95–102 (2012)

    Article  Google Scholar 

  17. Malcher, L., Pires, F., César de Sá, J.: An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. Int. J. Plast. 30, 81–115 (2012)

    Article  Google Scholar 

  18. Ritchie, R.O., Gilbert, C.J., McNaney, J.N.: Mechanics and mechanisms of fatigue damage and crack growth in advanced materials. Int. J. Solids Struct. 37, 311–329 (2000)

    Article  MATH  Google Scholar 

  19. Rozumek, D., Macha, E.: A survey of failure criteria and parameters in mixed-mode fatigue crack growth. Mater. Sci. 45, 190–210 (2009)

    Article  Google Scholar 

  20. Shojaei, A., Voyadjis, G., Tan, P.: Viscoplastic constitutive theory for brittle to ductile damage in polycrystalline materials under dynamic loading. Int. J. Plast. 48, 125–151 (2013)

    Article  Google Scholar 

  21. Stoughton, T., Yoon, J.: A new approach for failure criterion for sheet metals. Int. J. Plast. 27, 440–459 (2011)

    Article  MATH  Google Scholar 

  22. Susmel, L.: The theory of critical distances: a review of its applications in fatigue. Eng. Fract. Mech. 75, 1706–1724 (2008)

    Article  Google Scholar 

  23. Susmel, L.: Four stress analysis strategies to use the Modified Wöhler Curve Method to perform the fatigue assessment of weldments subjected to constant and variable amplitude multiaxial fatigue loading. Int. J. Fatigue 67, 38–54 (2014)

    Article  Google Scholar 

  24. Wang, Z.L., Xiao, H.: A study of metal fatigue failure as inherent features of elastoplastic constitutive equations. In: Altenbach, H., Matsuda, T., Okumura, D. (eds.) From Creep Damage Mechanics to Homogenization Methods - A Liber Amicorum to Celebrate the Brithday of Nobutada Ohno. Advanced Structural Materials Series, pp. 529–540. Springer, Berlin (2015)

    Chapter  Google Scholar 

  25. Xiao, H.: Thermo-coupled elastoplasticity model with asymptotic loss of the material strength. Int. J. Plast. 63, 211–228 (2014)

    Article  Google Scholar 

  26. Xiao, H.: A direct, explicit simulation of finite strain multiaxial inelastic behavior of polymeric solids. Int. J. Plast. 71, 146–169 (2015)

    Article  Google Scholar 

  27. Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiao, H., Bruhns, O.T., Meyers, A.: Existence and uniqueness of the integrable-exactly hypoelastic equation \(\dot{{{\varvec {\tau }}}}^{\ast }=\lambda (\text{ tr }{\varvec {D}}) {\varvec {I}}+ 2\mu { D}\) and its significance to finite inelasticity. Acta Mech. 138, 31–50 (1999)

    Article  MATH  Google Scholar 

  29. Xiao, H., Bruhns, O.T., Meyers, A.: The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. Roy. Soc. London A 456, 1865–1882 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiao, H., Bruhns, O.T., Meyers, A.: A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and the deformation gradient. Int. J. Plast. 16, 143–177 (2000)

    Article  MATH  Google Scholar 

  31. Xiao, H., Bruhns, O.T., Meyers, A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)

    Article  MATH  Google Scholar 

  32. Xiao, H., Bruhns, O.T., Meyers, A.: The exact integrability criterion in finite elastoplasticity and its constitutive implications. Acta Mech. 188, 227–244 (2007)

    Article  MATH  Google Scholar 

  33. Xiao, H., Bruhns, O., Meyers, A.: Thermodynamic laws and consistent Eulerian formulations of finite elastoplasticity with thermal effects. J. Mech. Phys. Solids 15, 338–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiao, H., Bruhns, O., Meyers, A.: Free rate-independent elastoplastic equations. ZAMM-J. Appl. Math. Mech. 94, 461–476 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, Q., Qian, L.H., Meng, J.Y., Zhao, L.J., Zhang, F.C.: Low-cycle fatigue behavior and microstructural evolution in a low-carbon carbide-free bainitic steel. Mater. Des. 85, 487–496 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SY., Zhan, L., Wang, ZL. et al. A direct approach toward simulating cyclic and non-cyclic fatigue failure of metals. Acta Mech 228, 4325–4339 (2017). https://doi.org/10.1007/s00707-017-1940-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1940-2

Navigation