Skip to main content
Log in

High and low cycle fatigue failure effects of metals predicted automatically from innovative elastoplastic equations with high-efficiency algorithms

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

New finite strain elastoplastic \(J_2\)-flow equations with no reference to the yield condition are proposed for the purpose of simultaneously simulating low-to-ultrahigh cycle failure effects of metals. As inherent response features of such new equations, the entire responses up to eventual failure under cyclic and non-cyclic loadings of constant and variable amplitudes are automatically predicted, in a direct sense without involving any additional damage-like variables and any ad hoc failure criteria. The thermodynamic consistency is ensured by demonstrating that the intrinsic dissipation is identically non-negative. Furthermore, a high-efficiency algorithm for integrating the elastoplastic rate equations is established toward bypassing very time-consuming numerical procedures in treating cyclic responses with high and even ultrahigh cycle number. With numerical examples, model predictions are shown to be in good agreement with fatigue failure data for low, high and very high cycle numbers, and the new algorithm is shown to be much faster and far more efficient than usual integration procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Argon, A.S.: Topics in Fracture and Fatigue. Springer, Berlin (2011)

    Google Scholar 

  2. Ritchie, R.O., Gilbert, C.J., McNaney, J.N.: Mechanics and mechanisms of fatigue damage and crack growth in advanced materials. Int. J. Solids Struct. 37, 311–328 (2000)

    MATH  Google Scholar 

  3. Susmel, L.: The theory of critical distances: a review of its applications in fatigue. Eng. Fract. Mech. 75, 1706–1726 (2008)

    Google Scholar 

  4. Rozumek, D., Macha, E.: A survey of failure criteria and parameters in mixed-mode fatigue crack growth. Mater. Sci. 45, 190–206 (2009)

    Google Scholar 

  5. Padilla, H.A., Boyce, B.L.: A review of fatigue behavior in nanocrystalline metals. Exp. Mech. 50, 5–23 (2010)

    Google Scholar 

  6. Mughrabi, H.: Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth. Philos. Trans. R. Soc. Lond. A (2015). https://doi.org/10.1098/rsta.2014.0132

    Article  Google Scholar 

  7. Brünig, M.: A continuum damage model based on experiments and numerical simulations—a review. In: Altenbach, H., Matsuda, T., Okumura, D. (eds.) From Creep Damage Mechanics to Homogenization Methods, Advanced Structured Materials Series 64, pp. 19–35. Springer, Berlin (2015)

    Google Scholar 

  8. Kallmeyer, A.R., Krgo, A., Kurath, P.: Evaluation of multiaxial fatigue life prediction methodologies for \(\text{ Ti}_6\)\(\text{ Al}_4\)V. ASME. J. Eng. Mater. Technol. 124, 229–237 (2002)

    Google Scholar 

  9. Jiang, Y., Otto, W., Baum, C., Vormwald, M., Nowack, H.: Fatigue life predictions by integrating EVICD fatigue damage model and an advanced cyclic plasticity theory. Int. J. Plasticity 25, 780–801 (2009)

    MATH  Google Scholar 

  10. Lim, C.B., Kim, K.S., Seong, J.B.: Ratcheting and fatigue behavior of a copper alloy under uniaxial cyclic loading with mean stress. Int. J. Fatigue 31, 501–507 (2009)

    Google Scholar 

  11. Wu, J.Y., Xu, S.L.: An augmented multicrack elastoplastic damage model for tensile cracking. Int. J. Solids Struct. 48, 2511–2527 (2011)

    Google Scholar 

  12. Brünig, M., Gerke, S., Hagenbrock, V.: Micro-mechanical studies on the effect of the stress triaxiality and the lode parameter on ductile damage. Int. J. Plasticity 50, 49–68 (2013)

    Google Scholar 

  13. Bian, L.C., Cheng, Y., Taheri, F.: Elasto-plastic analysis of critical fracture stress and fatigue prediction. Acta Mech. 225, 3059–3072 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Varna, J.: Strategies for stiffness analysis of laminates with microdamage: combining average stress and crack face displacement based methods. ZAMM J. Appl. Math. Mech. 95, 1081–1095 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Talreja, R.: A mechanisms-based reliability model for fatigue of composite laminates. ZAMM J. Appl. Math. Mech. 95, 1058–1068 (2015)

    MathSciNet  Google Scholar 

  16. Cortese, L., Nalli, F., Rossi, M.: A nonlinear model for ductile damage accumulation under multiaxial non-proportional loading conditions. Int. J. Plasticity 85, 77–93 (2016)

    Google Scholar 

  17. Canadija, M., Mosler, J.: A variational formulation for thermodynamically coupled low cycle fatigue at finite strains. Int. J. Solids Struct. 100–101, 388–398 (2016)

    Google Scholar 

  18. Li, J., Li, C.W., Zhang, Z.P.: Modeling of stable cyclic stress–strain responses under non-propotional loading. ZAMM J. Appl. Math. Mech (2017). https://doi.org/10.1002/zamm.201600279

    Article  Google Scholar 

  19. Liu, J.H., Pan, X.M., Wei, Y.B., Wang, Y.L.: Method for predicting the fatigue life of geometrically discontinuous structures under combined bending and torsion. Acta Mech. Solida Sin. 32, 367–77 (2019)

    Google Scholar 

  20. Nischler, A., Denk, J., Huber, O.: Fatigue modeling for wrought magnesium structures with various fatigue parameters and the concept of highly strained volume. Contin. Mech. Thermodyn. (2020). https://doi.org/10.1007/s00161-020-00884-2

    Article  Google Scholar 

  21. Volkov, I.A., Igumnov, L.A., Dell’lsola, F., Litvinchuk, S.Y., Eremeyev, V.A.: A continual model of a damaged medium used for analyzing fatigue life of polycrystalline structural alloys under thermal–mechanical loading. Contin. Mech. Thermodyn. 32, 229–245 (2020)

    ADS  MathSciNet  Google Scholar 

  22. Liu, W.C., Dong, J., Zhang, P., et al.: High cycle fatigue behavior of as-extruded ZK60 magnesium alloy. J. Mater. Sci. 44, 2916–2924 (2009)

    ADS  Google Scholar 

  23. Hamada, A.S., Karjalainen, L.P.: High-cycle fatigue behavior of ultrafine-grained austenitic stainless and twip steels. Mater. Sci. Eng. A 527, 5715–5722 (2010)

    Google Scholar 

  24. Guo, F.M., Feng, M.L., Nie, D.F., Xu, J.Q., Bhuiyan, M.S., Mutoh, Y.: Fatigue life prediction of SUS 630(H900) steel under high cycle loading. Acta Mech. Solida Sin. 26, 584–591 (2013)

    Google Scholar 

  25. Tomaszewski, T., Sempruch, J.: Analysis of size effect in high-cycle fatigue for EN AW-6063. Solid State Phenom. 224, 75–80 (2014)

    Google Scholar 

  26. Sun, L.L., Zhang, M., Hu, W.P., Meng, Q.C.: Tension–torsion high-cycle fatigue life prediction of 2A12-T4 aluminium alloy by considering the anisotropic damage: model, parameter identification, and numerical implementation. Acta Mech. Solida Sin. 29, 391–406 (2016)

    Google Scholar 

  27. Xiao, H., Bruhns, O.T., Meyers, A.: Free rate-independent elastoplastic equations. ZAMM J. Appl. Math. Mech. 94, 461–575 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Xiao, H.: Thermo-coupled elastoplasticity model with asymptotic loss of the material strength. Int. J. Plasticity 63, 211–228 (2014)

    Google Scholar 

  29. Wang, Z.L., Li, H., Yin, Z.N., Xiao, H.: A new, direct approach toward modeling thermocoupled fatigue failure behavior of metals and alloys. Acta Mech. Solida Sin. 30, 1–12 (2017)

    ADS  Google Scholar 

  30. Wang, Z.L., Xiao, H.: Direct modeling of multi-axial fatigue failure for metal. Int. J. Solids Struct. 125, 216–229 (2017)

    Google Scholar 

  31. Wang, S.Y., Zhan, L., Wang, Z.L., Yin, Z.N., Xiao, H.: A direct approach toward simulating cyclic and non-cyclic fatigue failure of metals. Acta Mech. 228, 4325–4339 (2017)

    Google Scholar 

  32. Wang, Y.S., Zhan, L., Xi, H.F., Xiao, H.: Coupling effects of finite rotation and strain-induced anisotropy on monotonic and cyclic failure of metals. Acta Mech. 229, 2963–2975 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Zhan, L., Wang, S.Y., Xi, H.F., Xiao, H.: Innovative elastoplastic \(\text{ J}_2\)-flow model incorporating cyclic and non-cyclic failure effects of metals as inherent constitutive features. ZAMM J. Appl. Math. Mech. (2019). https://doi.org/10.1002/zamm.201900023

    Article  Google Scholar 

  34. Zhan, L., Wang, S.Y., Xi, H.F., Xiao, H.: Direct simulation of thermo-coupled fatigue failure of metals. ZAMM J. Appl. Math. Mech. 98, 856–869 (2018)

    MathSciNet  Google Scholar 

  35. Bruhns, O.T.: The Prandtl–Reuss equations revisited. ZAMM J. Appl. Math. Mech. 94, 187–202 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)

    MathSciNet  MATH  Google Scholar 

  37. Xiao, H., Bruhns, O.T., Meyers, A.: Strain rates and material spins. J. Elasticity 52, 1–41 (1998)

    MathSciNet  MATH  Google Scholar 

  38. Xiao, H., Bruhns, O.T., Meyers, A.: On objective corotational rates and their defining spin tensors. Int. J. Solids Struct. 35, 4001–4012 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Xiao, H., Bruhns, O.T., Meyers, A.: Existence and uniqueness of the integrable-exactly hypoelastic equation \(\mathring{{\varvec {\tau }}}= \lambda (\text{ tr }{{\varvec {D}}}){{\varvec {I}}}+ 2\mu {{\varvec {D}}}\) and its significance to finite inelasticity. Acta Mech. 138, 31–50 (1999)

    Google Scholar 

  40. Xiao, H., Bruhns, O.T., Meyers, A.: The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. R. Soc. Lond. A 456, 1865–1882 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Xiao, H.: Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscip. Model. Mater. Struct. 1, 1–51 (2005)

    Google Scholar 

  42. Xiao, H., Bruhns, O.T., Meyers, A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)

    MATH  Google Scholar 

  43. Wang, S.Y., Zhan, L., Xi, H.F., Bruhns, O.T., Xiao, H.: Hencky strain and logarithmic rate for unified approach to constitutive modeling of continua. In: Altenbach, H., Öchsner, A. (eds.) State of the Art and Future Trend in Material Modeling. Advanced Structured Materials, vol. 100, pp. 443–484. Springer, Berlin (2019)

    Google Scholar 

  44. Bell, J.F.: The experimental foundations of solid mechanics. In: Truesdell, C. (ed.) Handbuch der Physik. Springer, Berlin (1973)

    Google Scholar 

  45. Bruhns, O.T., Xiao, H., Meyers, A.: Self-consistent eulerian rate type elastoplasticity models based upon the logarithmic stress rate. Int. J. Plasticity 15, 479–520 (1999)

    MATH  Google Scholar 

  46. Xiao, H., Bruhns, O.T., Meyers, A.: Thermodynamic laws and consistent Eulerian formulations of finite elastoplasticity with thermal effects. J. Mech. Phys. Solids 55, 338–365 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was jointly supported by the fund from the Natural Science Foundation of China (No.:11372172) and the start-up fund from Jinan University, Guangzhou, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Xiao.

Additional information

Communicated by Andreas Öchsner.

Professor Dr. Holm Altenbach on the occasion of his 65th birthday

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, L., Wang, SY., Xi, HF. et al. High and low cycle fatigue failure effects of metals predicted automatically from innovative elastoplastic equations with high-efficiency algorithms. Continuum Mech. Thermodyn. 33, 1041–1052 (2021). https://doi.org/10.1007/s00161-020-00945-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00945-6

Keywords

Navigation