Skip to main content
Log in

Lysobacter prati sp. nov., isolated from a plateau meadow sample

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel proteobacterial strain designated SYSU H10001T was isolated from a soil sample collected from plateau meadow in Hongyuan county, Sichuan province, south-western China. The taxonomic position of the strain was investigated using a polyphasic approach. On the basis of 16S rRNA gene sequence similarities and phylogenetic analysis, strain SYSU H10001T was most closely related to Lysobacter soli KCTC 22011T (98.6%, sequence similarity) and Lysobacter panacisoli JCM 19212T (98.2%). The prediction result of secondary metabolites based on genome shown that the strain SYSU H10001T contained 3 clusters of bacteriocins, 1 cluster of non-ribosomal peptide synthetase, 1 cluster of type 1 polyketide synthase and 1 cluster of arylpolyene. In addition, the major isoprenoid quinone was Q-8 and the major fatty acids were identified as iso-C15:0, iso-C17:0 and Summed feature 9. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and three unidentified phospholipids. The genomic DNA G + C content of strain SYSU H10001T was 66.5% (genome). On the basis of phenotypic, genotypic and phylogenetic data, strain SYSU H10001T represents a novel species of the genus Lysobacter, for which the name Lysobacter prati sp. nov. is proposed. The type strain is SYSU H10001T (= KCTC 72062T = CGMCC 1.16662T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Athalye M, Goodfellow M, Lacey J, White RP (1985) Numerical classification of Actinomadura and Nocardiopsis. Int J Syst Bacteriol 35:86–98

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz310

    Article  PubMed  PubMed Central  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhao YL, Cheng J, Zhou XK, Salam N, Fang BZ, Li QQ, Hozzein WN, Li WJ (2016) Lysobacter cavernae sp. nov., a novel bacterium isolated from a cave sample. Antonie Van Leeuwenhoek 109:1047–1053

    Article  CAS  PubMed  Google Scholar 

  • Chhetri G, Kim J, Kim I, Seo T (2019) Lysobacter caseinilyticus, sp nov, a casein hydrolyzing bacterium isolated from sea water. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-019-01267-7

    Article  PubMed  Google Scholar 

  • Choi JH, Seok JH, Cha JH, Cha CJ (2014) Lysobacter panacisoli sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 64:2193–2197

    Article  CAS  PubMed  Google Scholar 

  • Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Evol Microbiol 28:367–393

    Google Scholar 

  • Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470

    Article  CAS  Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  • De Bruijn I, Cheng X, de Jager V, Expósito RG, Watrous J, Patel N, Postma J, Dorrestein PC, Kobayashi D, Raaijmakers JM (2015) Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genom 16:991

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416

    Article  Google Scholar 

  • Fukuda W, Kimura T, Araki S, Miyoshi Y, Atomi H, Imanaka T (2013) Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica. Int J Syst Evol Microbiol 63:3313–3318

    Article  CAS  PubMed  Google Scholar 

  • Gordon RE, Barnett DA, Handerhan JE, Pang CHN (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63

    Article  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  CAS  PubMed  Google Scholar 

  • Harrison PG, Strulo B (2000) SPADES—a process algebra for discrete event simulation. J Logic Comput 10:3–42

    Article  Google Scholar 

  • Hernández I, Fernàndez C (2017) Draft genome sequence and assembly of a Lysobacter enzymogenes strain with biological control activity against root knot nematodes. Genome Announc 5:e00271–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang Y, Li QY, Chen X, Jiang CL (2016). Isolation and cultivation methods of Actinobacteria. In: Dhanasekaran D (ed) Actinobacteria-basics and biotechnological applications, pp 39–57, (Rijeka: InTech)

  • Kim I, Choi J, Chhetri G, Seo T (2019) Lysobacter helvus sp. nov. and Lysobacter xanthus sp. nov., isolated from soil in South Korea. Antonie Van Leeuwenhoek 112:1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1985) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:256–259

    Article  CAS  Google Scholar 

  • Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428

    Article  PubMed  Google Scholar 

  • Lin SY, Hameed A, Wen CZ, Liu YC, Hsu YH, Lai WA, Young CC (2015) Lysobacter lycopersici sp. nov., isolated from tomato plant Solanum lycopersicum. Antonie Van Leeuwenhoek 107:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Dong HQ, Zhou M, Huang YL, Zhang H, He WL, Sheng HM, An LZ (2019) Lysobacter psychrotolerans sp. nov., isolated from soil in the Tianshan Mountains, Xinjiang, China. Int J Syst Evol Microbiol 69:926–931

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95

    Article  CAS  Google Scholar 

  • Minnikin D, O’Donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Appl Bacteriol 2:233–241

    CAS  Google Scholar 

  • Nie GX, Ming H, Li S, Zhou EM, Cheng J, Tang X, Feng HG, Tang SK, Li WJ (2012) Amycolatopsis dongchuanensis sp. nov., a novel actinobacterium isolated from dry-hot valley in Yunnan, south-west China. Int J Syst Evol Microbiol 62:2650–2656

    Article  CAS  PubMed  Google Scholar 

  • Panthee S, Hamamoto H, Paudel A, Sekimizu K (2016) Lysobacter, species: a potential source of novel antibiotics. Arch Microbiol 198(9):839–845

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Kim R, Aslam Z, Jeon CO, Chung YR (2008) Lysobacter capsici sp. nov. with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 58:387–392

    Article  CAS  PubMed  Google Scholar 

  • Pridham TG, Gottlieb G (1948) The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J Bacteriol 56:107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. Microbial ID Inc, Newark

    Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Siddiqi MZ, Im WT (2016) Lysobacter hankyongensis sp. nov., isolated from activated sludge and Lysobacter sediminicola sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 66:212–218

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan S, Kim MK, Sathiyaraj G, Kim HB, Kim YJ, Yang DC (2010) Lysobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60:1543–1547

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei DQ, Yu TT, Yao JC, Zhou EM, Song ZQ, Yin YR, Ming H, Tang SK, Li WJ (2012) Lysobacter thermophilus sp. nov., isolated from a geothermal soil sample in Tengchong, south-west China. Antonie Van Leeuwenhoek 102:643–651

    Article  CAS  PubMed  Google Scholar 

  • Weon HY, Kim BY, Kim MK, Yoo SH, Kwon SW, Go SJ, Stackebrandt E (2007) Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. Int J Syst Evol Microbiol 57:548–551

    Article  CAS  PubMed  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Baltimore, Williams & Willkins, pp 2453–2492

    Google Scholar 

  • Wu M, Scott AJ (2012) Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28:1033–1034

    Article  CAS  PubMed  Google Scholar 

  • Xiao M, Zhou XK, Chen X, Duan YQ, Alkhalifah MDH, Im WT, Hozzein WN, Chen W, Li WJ (2019) Lysobacter tabacisoli sp. nov., isolated from rhizosphere soil of Nicotiana tabacum L. Int J Syst Evol Microbiol 69:1875–1880

    Article  PubMed  Google Scholar 

  • Xie YX, Wright S, Shen YM, Du LC (2012) Bioactive natural products from Lysobacter. Nat Prod Rep 29:1277–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017a) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J (2017b) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  PubMed  Google Scholar 

  • Zhang XJ, Yao Q, Wang YH, Yang SZ, Feng GD, Zhu HH (2019) Lysobacter silvisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 69:93–98

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Jung-Sook Lee (KCTC, Korea) and Prof. Takuji Kudo (JCM, Japan) for kindly providing the experimental control strains. This research was supported by the National Key R&D Program of China (2017YFD0200503), Fundamental research funds for the central universities, SYSU (No. 19lgpy173) and National Fundamental Fund Project Subsidy Funds of Personnel Training of China (No. J1310025). W-J Li was also supported by Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme (2014).

Author information

Authors and Affiliations

Authors

Contributions

BZF and WJL designed research and project outline. BZF, ZXK, and LL performed isolation, deposition, and identification. YGX, JYJ and XTZ performed genome analysis. BZF, MW and WJL drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wen-Jun Li.

Ethics declarations

Conflict of interest

All the authors have declared no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, BZ., Xie, YG., Zhou, XK. et al. Lysobacter prati sp. nov., isolated from a plateau meadow sample. Antonie van Leeuwenhoek 113, 763–772 (2020). https://doi.org/10.1007/s10482-020-01386-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-020-01386-6

Keywords

Navigation