Skip to main content
Log in

Lysobacter agri sp. nov., a bacterium isolated from soil

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A bacterial strain, designated as THG-SKA3T, was isolated from field soil of Kyung Hee University, South Korea. Cells of the isolate were observed to be Gram-negative, aerobic, rod-shaped and motile by gliding. The strain was found to grow optimally at 28 °C, at pH 7 and in absence of NaCl. Based on 16S rRNA gene sequence comparisons, strain THG-SKA3T shared highest sequence similarity with Lysobacter niastensis KACC 11588T followed by Lysobacter panacisoli KACC 17502T, Lysobacter enzymogenes LMG 8762T and Lysobacter oryzae KCTC 22249T. The G+C content of THG-SKA3T was determined to be 68.9 mol%. The DNA–DNA relatedness values between strain THG-SKA3T and its closest phylogenetic neighbors were below 25.0 %.The major polar lipids of strain THG-SKA3T were determined to be diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was identified as ubiquinone 8 (Q-8). The major cellular fatty acids were identified as branched chain iso-C15:0, iso-C16:0 and unsaturated iso-C17:1 ω9c. On the basis of polyphasic data presented, it is evident that strain THG-SKA3T represents a novel species of the genus Lysobacter, for which the name Lysobacter agri sp. nov. (type strain THG-SKA3T = KACC 18283T = CSCTCC AB 2015126T) is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aslam Z, Yasir M, Jeon CO, Chung YR (2009) Lysobacter oryzae sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.). Int J Syst Evol Microbiol 59:675–680

    Article  CAS  PubMed  Google Scholar 

  • Bernardet JF, Nakagawa Y, Holmes B, Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Seok JH, Cha JH, Cha CJ (2014) Lysobacter panacisoli sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 64:2193–2197

    Article  CAS  PubMed  Google Scholar 

  • Christensen WB (1946) Urea decomposition as a means of differentiating Proteus and Paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28:367–393

    Article  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Fukuda W, Kimura T, Araki S, Miyoshi Y, Atomi H, Imanaka T (2013) Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica. Int J Syst Evol Microbiol 63:3313–3318

    Article  CAS  PubMed  Google Scholar 

  • Gillis M, De Ley J, De Cleene M (1970) The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12:143–153

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lee JW, Im WT, Kim MK, Yang DC (2006) Lysobacter koreensis sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol 56:231–235

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Hameed A, Wen CZ, Liu YC, Hsu YH, Lai WA, Young CC (2015) Lysobacter lycopersici sp. nov., isolated from tomato plant Solanum lycopersicum. Antonie van Leeuwenhoek. doi:10.1007/s10482-015-0419-1

    PubMed Central  Google Scholar 

  • Liu M, Liu Y, Wang Y, Luo X, Dai J, Fang C (2011) Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. Int J Syst Evol Microbiol 61:433–437

    Article  CAS  PubMed  Google Scholar 

  • Luo G, Shi Z, Wang G (2012) Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int J Syst Evol Microbiol 62:1659–1665

    Article  CAS  PubMed  Google Scholar 

  • McConaughy BL, Laird CD, McCarthy BJ (1969) Nucleic acid reassociation in formamide. Biochemistry 8:3289–3295

    Article  CAS  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE, ODonnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Moore DD, Dowhan D (1995) Preparation and analysis of DNA. In: Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2–11

    Google Scholar 

  • Ngo HTT, Won K, Du J, Son HM, Park Y, MooChang K, Kim KY, Jin FX, Yi TH (2014) Lysobacter terrae sp. nov. isolated from Aglaia odorata rhizosphere soil. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.067397-0

    Google Scholar 

  • Park JH, Kim R, Aslam Z, Jeon CO, Chung YR (2008) Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 58:387–392

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach H (1992) The order Cytophagales. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, vol 4, 2nd edn. Springer, New York, pp 3631–3675

    Google Scholar 

  • Romanenko LA, Uchino M, Tanaka N, Frolova GM, Mikhailov VV (2008) Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. Int J Syst Evol Microbiol 58:370–374

    Article  CAS  PubMed  Google Scholar 

  • Saddler GS, Bradbury JF (2005) Family I. Xanthomonadaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 63–122

    Chapter  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  • Schmidt K, Connor A, Britton G (1994) Analysis of pigments: carotenoids and related polyenes. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 403–461

    Google Scholar 

  • Singh H, Du J, Ngo HT, Won K, Yang JE, Kim KY, Yi TH (2015) Lysobacter fragariae sp. nov. and Lysobacter rhizosphaerae sp. nov. isolated from rhizosphere of strawberry plant. Antonie van Leeuwenhoek. doi:10.1007/s10482-015-0439-x

    Google Scholar 

  • Skerman VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Srinivasan S, Kim MK, Sathiyaraj G, Kim HB, Kim YJ, Yang DC (2010) Lysobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60:1543–1547

    Article  CAS  PubMed  Google Scholar 

  • Stabili L, Gravili C, Tredici SM, Piraino S, Talà A, Boero F, Alifano P (2008) Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 56:625–636

    Article  CAS  PubMed  Google Scholar 

  • Tamaoka J, Katayama-Fujiruma A, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ten LN, Jung H, Im WT, Yoo SA, Oh HM, Lee ST (2009) Lysobacter panaciterrae sp. nov., isolated from soil of ginseng field. Int J Syst Evol Microbiol 59:958–963

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Dai J, Zhang L, Luo X, Li Y, Chen G, Tang Y, Meng Y, Fang C (2009) Lysobacter ximonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 59:786–789

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore WEC, Murray RGE et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464

    Google Scholar 

  • Wei DQ, Yu TT, Yao JC, Zhou EM, Song ZQ (2012) Lysobacter thermophilus sp. nov., isolated from a geothermal soil sample in Tengchong, south-west China. Antonie van Leeuwenhoek 102:643–651

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weon HY, Kim BY, Baek YK, Yoo SH, Kwon SW, Stackebrandt E, Go SJ (2006) Two novel species Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int J Syst Evol Microbiol 56:947–951

    Article  CAS  PubMed  Google Scholar 

  • Weon HY, Kim BY, Kim MK, Yoo SH, Kwon SW, Go SJ, Stackebrandt E (2007) Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. Int J Syst Evol Microbiol 57:548–551

    Article  CAS  PubMed  Google Scholar 

  • Yang SZ, Feng GD, Zhu HH, Wang YH (2014) Lysobacter mobilis sp. nov., isolated from abandoned lead–zinc ore. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.000026

    Google Scholar 

  • Ye XM, Chu CW, Shi C, Zhu JC, He Q, He J (2014) Lysobacter caeni sp. nov., isolated from the sludge of pesticide manufacturing factory. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.000026

    Google Scholar 

  • Yu TT, Zhou EM, Yin YR, Yao JC, Ming H, Dong L, Li S, Nie GX, Li WJ et al (2013) Vulcaniibacterium tengchongense gen. nov., sp. nov. isolated from a geothermally heated soil sample, and reclassification of Lysobacter thermophiles Wei et al. 2012 as Vulcaniibacterium thermophilum comb. nov. Antonie Van Leeuwenhoek 104:369–376

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Bai J, Wang Y, Wu JL, Dai J, Fang CX (2011) Lysobacter korlensis sp. nov. and Lysobacter bugurensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:2259–2265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was conducted under the industrial infrastructure program (No. N0000888) for fundamental technologies which is funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Hoo Yi.

Additional information

The NCBI GenBank accession number for the 16S rRNA gene sequence of strains THG-SKA3T is KM576858.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10482_2015_510_MOESM1_ESM.tif

Supplementary Fig. S1 The maximum-likelihood tree based on 16S rRNA gene sequence analysis showing the phylogenetic relationships between strain THG-SKA3T and members of the genus Lysobacter. Bootstrap values less than 50 % were not indicated. Dyella terrae JS14-6T was used as an out group. Scale bar, 0.05 substitutions per nucleotide position. Supplementary material 1 (TIFF 109 kb)

10482_2015_510_MOESM2_ESM.tif

Supplementary Fig. S2. Transmission electron micrograph of Lysobacter agri THG-SKA3T. Bar indicated 0.5 μm. Supplementary material 2 (TIFF 1768 kb)

10482_2015_510_MOESM3_ESM.tif

Supplementary Fig. S3. Two-dimensional TLC of the total polar lipids of Lysobacter agri THG-SKA3T (a) and Lysobacter niatensis KACC 11588T (b), stained for total polar lipids with 5 % ethanolic molybdatophosphoric acid. Abbreviations: DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; PE, phosphatidylethanolamine; APL1-2, unidentified aminophospholipid; PL, unidentified phospholipid. Supplementary material 3 (TIFF 1609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Won, K., Du, J. et al. Lysobacter agri sp. nov., a bacterium isolated from soil. Antonie van Leeuwenhoek 108, 553–561 (2015). https://doi.org/10.1007/s10482-015-0510-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0510-7

Keywords

Navigation