Skip to main content
Log in

Physiological and metabolic diversity in the yeast Kluyveromyces marxianus

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Kluyveromyces marxianus is homothallic hemiascomycete yeast frequently isolated from dairy environments. It possesses phenotypic traits such as enhanced thermotolerance, inulinase production, and rapid growth rate that distinguish it from its closest relative Kluyveromyces lactis. Certain of these traits, notably fermentation of lactose and inulin to ethanol, make this yeast attractive for industrial production of ethanol from inexpensive substrates. There is relatively little known, however, about the diversity in this species, at the genetic, metabolic or physiological levels. This study compared phenotypic traits of 13 K. marxianus strains sourced from two European Culture Collections. A wide variety of responses to thermo, osmotic, and cell wall stress were observed, with some strains showing multi-stress resistance. These traits generally appeared unlinked indicating that, as with other yeasts, multiple resistance/adaptation pathways are present in K. marxianus. The data indicate that it should be possible to identify the molecular basis of traits to facilitate selection or engineering of strains adapted for industrial environments. The loci responsible for mating were also identified by genome sequencing and PCR analysis. It was found that K. marxianus can exist as stable haploid or diploid cells, opening up additional prospects for future strain engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Astrom SU, Rine J (1998) Theme and variation among silencing proteins in Saccharomyces cerevisiae and Kluyveromyces lactis. Genetics 148(3):1021–1029

    PubMed  CAS  Google Scholar 

  • Barnett JA, Entian KD (2005) A history of research on yeasts 9: regulation of sugar metabolism. Yeast 22(11):835–894

    Article  PubMed  CAS  Google Scholar 

  • Barsoum E, Martinez P, Astrom SU (2010) Alpha 3, a transposable element that promoters host sexual reproduction. Genes Dev 24:33–44

    Article  PubMed  CAS  Google Scholar 

  • Blank LM, Lehmbeck F, Sauer U (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5(6–7):545–558

    Article  PubMed  CAS  Google Scholar 

  • Butler G, Kenny C, Fagan A, Kurischko C, Gaillardin C, Wolfe KH (2004) Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc Natl Acad Sci USA 101(6):1632–1637

    Article  PubMed  CAS  Google Scholar 

  • Christensen AD, Kadar Z, Oleskowicz-Popiel P, Thomsen MH (2011) Production of bioethanol from organic whey using Kluyveromyces marxianus. J Ind Microbiol Biotechnol 38(2):283–289

    Article  PubMed  CAS  Google Scholar 

  • Conant GC, Wolfe KH (2007) Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol Syst Biol 3:129

    Article  PubMed  Google Scholar 

  • Cubillos FA, Billi E, Zorgo E, Parts L, Fargier P, Omholt S, Blomberg A, Warringer J, Louis EJ, Liti G (2011) Assessing the complex architecture of polygenic traits in diverged yeast populations. Mol Ecol 20(7):1401–1413

    Article  PubMed  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430(6995):35–44

    Article  PubMed  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79(3):339–354

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara H (2003) The Kluyver effect revisited. FEMS Yeast Res 3(4):327–331

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara H (2006) Kluyveromyces lactis—a retrospective. FEMS Yeast Res 6(3):323–324

    Article  PubMed  CAS  Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57(2–3):267–272

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583(24):4025–4029

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45

    Article  PubMed  CAS  Google Scholar 

  • Hood-Degrenier JK (2011) Identification of phosphatase 2A-like Sit4-mediated signalling and ubiquitin-dependent protein sorting as modulators of caffeine sensitivity in S. cerevisiae. Yeast 28(3):189–204. doi:10.1002/yea.1830

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki L, Castaneda-Bueno M, Sanchez-Paredes E, Velazquez-Zavala N, Torres-Quiroz F, Ongay-Larios L, Coria R (2008) Protein kinases involved in mating and osmotic stress in the yeast Kluyveromyces lactis. Eukaryot Cell 7(1):78–85

    Article  PubMed  CAS  Google Scholar 

  • Kummel A, Ewald JC, Fendt SM, Jol SJ, Picotti P, Aebersold R, Sauer U, Zamboni N, Heinemann M (2010) Differential glucose repression in common yeast strains in response to HXK2 deletion. FEMS Yeast Res 10(3):322–332

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 4(3):233–245

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73(4):331–371

    Article  PubMed  CAS  Google Scholar 

  • Lachance MA (2007) Current status of Kluyveromyces systematics. FEMS Yeast Res 7(5):642–645

    Article  PubMed  CAS  Google Scholar 

  • Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol Rev 24:17–26

    Article  Google Scholar 

  • Li H, Johnson AD (2010) Evolution of transcription networks–lessons from yeasts. Curr Biol 20(17):R746–R753

    Article  PubMed  CAS  Google Scholar 

  • Llorente B, Malpertuy A, Blandin G, Artiguenave F, Wincker P, Dujon B (2000) Genomic exploration of the hemiascomycetous yeasts: 12 Kluyveromyces marxianus var. marxianus. FEBS Lett 487(1):71–75

    Article  PubMed  CAS  Google Scholar 

  • Merico A, Sulo P, Piskur J, Compagno C (2007) Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J 274(4):976–989

    Article  PubMed  CAS  Google Scholar 

  • Merico A, Galafassi S, Piskur J, Compagno C (2009) The oxygen level determines the fermentation pattern in Kluyveromyces lactis. FEMS Yeast Res 9(5):749–756

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds RR, Taylor JWW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematic. CAB International, Wallingford, UK

    Google Scholar 

  • Pang ZW, Liang JJ, Qin XJ, Wang JR, Feng JX, Huang RB (2010) Multiple induced mutagenesis for improvement of ethanol production by Kluyveromyces marxianus. Biotechnol Lett 32(12):1847–1851

    Article  PubMed  CAS  Google Scholar 

  • Piskur J, Rozpedowska E, Polakova S, Merico A, Compagno C (2006) How did Saccharomyces evolve to become a good brewer? Trends Genet 22(4):183–186

    Article  PubMed  CAS  Google Scholar 

  • Porro D, Branduardi P (2009) Yeast cell factory: fishing for the best one or engineering it? Microb Cell Fact 8:51

    Article  PubMed  Google Scholar 

  • Qian J, Qin X, Yin Q, Chu J, Wang Y (2010) Cloning and characterization of Kluyveromyces marxianus HOG1 gene. Biotechnol Lett 33(3):571–575

    Article  PubMed  Google Scholar 

  • Ram AF, Klis FM (2006) Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat Protoc 1(5):2253–2256

    Article  PubMed  CAS  Google Scholar 

  • Rodicio R, Heinisch JJ (2010) Together we are strong–cell wall integrity sensors in yeasts. Yeast 27(8):531–540

    Article  PubMed  CAS  Google Scholar 

  • Rodicio R, Buchwald U, Schmitz HP, Heinisch JJ (2008) Dissecting sensor functions in cell wall integrity signaling in Kluyveromyces lactis. Fungal Genet Biol 45(4):422–435

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Pena JM, Garcia R, Nombela C, Arroyo J (2010) The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes. Yeast 27(8):495–502

    Article  PubMed  CAS  Google Scholar 

  • Rozpedowska E, Galafassi S, Johansson L, Hagman A, Piskur J, Compagno C (2011) Candida albicans—a pre-whole genome duplication yeast— is predominantly aerobic and a poor ethanol producer. FEMS Yeast Res 11(3):285–291

    Article  PubMed  CAS  Google Scholar 

  • Rubio-Texeira M (2006) Endless versatility in the biotechnological applications of Kluyveromyces LAC genes. Biotechnol Adv 24(2):212–225

    Article  PubMed  CAS  Google Scholar 

  • Salvado Z, Arroyo-Lopez FN, Guillamon JM, Salazar G, Querol A, Barrio E (2011) Temperature adaptation markedly determines evolution within the Saccharomyces genus. Appl Environ Microbiol 77(7):2292–2302

    Article  PubMed  CAS  Google Scholar 

  • Schaffrath R, Breunig KD (2000) Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genet Biol 30(3):173–190

    Article  PubMed  CAS  Google Scholar 

  • Smith DA, Morgan BA, Quinn J (2010) Stress signalling to fungal stress-activated protein kinase pathways. FEMS Microbiol Lett 306(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Suleau A, Jacques N, Reitz-Ausseur J, Casaregola S (2005) Intraspecific gene expression variability in the yeast Kluyveromyces lactis revealed by micro-array analysis. FEMS Yeast Res 5(6–7):595–604

    Article  PubMed  CAS  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387(6634):708–713

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in parts by grants awarded by the Science Foundation of Ireland (08/RFP/GEN1295; 07/IN1/B911); the Irish Department of Agriculture FIRM programme (06RDC459; 06RDC506) and Enterprise Ireland (IP/2008/0559). We thank Michael McCarthy and Olan Burke, Carbery Group, Ballineen, West Cork for supporting aspects of this research. The technical help of Pat Higgins, Dan Walsh, Paddy Reilly, and Laura Casey is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Morrissey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supp Fig. 1.Alignment of 26S LSU D1_D2 sequences of strains used in this study.

Sequences of the D1/D2 region of the LSU (26S) rDNA were retrieved from the CBS database for strains CBS 397, CBS 745, CBS 608, NCYC 2791 (CBS 712), NCYC 970 (CBS 2762), NCYC 2597 (CBS 6556) and NCYC 1424 (CBS 5795). The corresponding sequence from strains CBS 7858, NCYC 100, NCYC 111, NCYC 179, NCYC 587 and NCYC 2887 was generated de novo using the NL1 and NL4 primers as sequence of these strains was not available in databases. Reference sequence of type strains of K. marxianus (U94924) and K. lactis (U94922) were obtained from Genbank and used as standards. Sequences were trimmed to similar lengths and aligned using ClustalW on the EBI website (www.ebi.ac.uk). Alignments were displayed using Jalview and assembled to show the complete alignment of this region. The reference sequences show the G/A polymorphism (at position 100 in this alignment) that distinguishes K. lactis and K. marxianus. This alignment demonstrates that all the strains used in this study were correctly classified as K. marxianus isolates. (PPTX 551 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lane, M.M., Burke, N., Karreman, R. et al. Physiological and metabolic diversity in the yeast Kluyveromyces marxianus . Antonie van Leeuwenhoek 100, 507–519 (2011). https://doi.org/10.1007/s10482-011-9606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9606-x

Keywords

Navigation